POJ 1228 Grandpa's Estate(确定凸包)

10 篇文章 0 订阅

题目链接:
POJ 1228 Grandpa’s Estate
题意:
给出n个点,问由这n个点能不能位唯一确定一个凸包?
分析:
看到有网友将这称为稳定凸包。
其实就是确定这n个点所形成的凸包每条边上是不是至少有三个点。
当顶点数小于6的时候肯定是不能构成凸包的,这个特判下就好了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#include <cmath>
using namespace std;
const double EPS=1e-10;
const int MAX_N=1010;
const double PI=acos(-1.0);

int n;

struct Point{
    double x,y;

    Point () {}
    Point (double x,double y) : x(x),y(y) {
    }
    Point operator + (const Point& rhs) const {
        return Point(x+rhs.x,y+rhs.y);
    }
    Point operator - (const Point& rhs) const {
        return Point(x-rhs.x,y-rhs.y);
    }
    Point operator * (const double d) const {
        return Point(x*d,y*d);
    }
    double cross(const Point& rhs) const {
        return (x*rhs.y-y*rhs.x);
    }
}point[MAX_N],res[MAX_N];

bool cmp_x(Point a,Point b) 
{
    if(a.x==b.x) return a.y<b.y;
    else return a.x<b.x;
}

int Andrew()
{
    sort(point,point+n,cmp_x);
    int k=0;
    for(int i=0;i<n;i++){
        while(k>1 && (res[k-1]-res[k-2]).cross(point[i]-res[k-1])<=0) k--;
        res[k++]=point[i];
    }
    int m=k;
    for(int i=n-2;i>=0;i--){
        while(k>m && (res[k-1]-res[k-2]).cross(point[i]-res[k-1])<=0) k--;
        res[k++]=point[i];
    }
    if(k>1) k--;
    return k;
}

void solve()
{
    int total=Andrew();
    //printf("total=%d\n",total);
    /*
    将边上的点也存进凸包顶点里,在判断的时候只需要判断凸包顶点中是否一定存在相邻向量叉积为0即可
    上面Andrew()函数中需要将(res[k-1]-res[k-2]).cross(point[i]-point[k-1])<=0改为
    (res[k-1]-res[k-2]).cross(point[i]-point[k-1])
    int flag=1;
    for(int i=1;i<total;i++){
        if((res[i-1]-res[i]).cross(res[(i+1)%total]-res[i])!=0
        &&(res[i]-res[(i+1)%total]).cross(res[(i+2)%total]-res[(i+1)%total])!=0){
            printf("NO\n");
            flag=0;
            break;
        }
    }
    if(flag){
        printf("YES\n");
    }
    */

    int flag=1;
    for(int i=0;i<total;i++){ //遍历凸包边
        Point a=res[i],b=res[(i+1)%total];//该边端点是a和b
        int cnt=0;
        for(int j=0;j<n;j++){ //检查该边上点的个数
            //printf("i=%d j=%d %.2f\n",i,j,fabs((point[j]-a).cross(b-point[j])));
            if((point[j]-a).cross(b-point[j])==0){// 在这条边上的点
                cnt++;
                if(cnt>=3) break;
            }
        }
        if(cnt<3){ //少于三个点
            //printf("i=%d\n",i);
            printf("NO\n");
            flag=0;
            break;
        }
    }
    if(flag) printf("YES\n");

}

int main()
{
    //freopen("Din.txt","r",stdin);
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        for(int i=0;i<n;i++){
            scanf("%lf%lf",&point[i].x,&point[i].y);
        }
        //要构成稳定凸包至少需要5个顶点(构成三角形)
        if(n<6){
            printf("NO\n");
            continue;
        }
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值