Simulated Annealing Optimization

      Simulated Annealing is an optimization algorithm that simulates the annealing process in the thermodynamics energetics. The basic ideas is that any object will go through the state transition from the high temperature to the low one. And accordingly the inner energy will decrease to a low level, with a stable state. In the SA, the target function is recognized as the energy function. The search of the optimal solution is a simulation that the system temperature lows from a high level, and the energy function becomes stable too.

       In SA, there is an important criterion, namely Metropolis. In the high temperature, the system can accept the new state with large difference from current one; while in the low temperature, the system almost accepts the new state with little difference from the current one. When the temperature approaches zero, then any state with a higher energy than current one will be rejected. This properties ensure that SA can accept the inferior solution, and avoid getting trapped in the local optimal solution. SA is a simple heuristic algorithm with a powerful area search and local search, and presents a developing trends. 

# -*- coding: utf-8 -*-
"""
Created on 2017/3/16 20:16 2017

@author: Randolph.Lee
"""
import random
import copy
import numpy as np
import sys


class SimulatedAnnealing:
    def __init__(self, graph_mat, param, inner_iter, T_start, T_stop, initial_solution):
        self.graph = graph_mat
        self.T_start = T_start
        self.T_stop = T_stop
        self.param = param
        self.inner_iter = inner_iter
        self.current_temperature = T_start
        self.current_solution = initial_solution
        self.best_solution = []
        self.best_fit = sys.maxint

    def cal_fitness(self, solution):
        # calculate the total length of path
        return reduce(lambda x, y: x + y, [self.graph[i, j] for i in solution[:-1] for j in solution[1:]])

    def generate_candidate(self):
        # adopt the interpolation method
        select_index = random.randint(0, len(self.current_solution)-1)
        copy_solution = copy.deepcopy(self.current_solution)
        del copy_solution[select_index]
        insert_position = random.sample(filter(lambda x: x != select_index, range(len(self.current_solution))), 1)
        return copy_solution[:insert_position] + [self.current_solution[select_index]] + copy_solution[insert_position:]

    def update_temperature(self):
        # adopt the scale-down strategy
        self.current_temperature *= self.param

    def inner_loop(self):
        step = 0
        while step < self.inner_iter:
            # generate a new variable, therefore it won't influence the self.current_solution
            candidate = self.generate_candidate()
            delta = self.cal_fitness(candidate) - self.cal_fitness(self.current_solution)
            if delta < 0:
                self.current_solution = candidate
                step += 1
            else:
                if random.random() < np.exp(-delta / self.current_temperature):
                    self.current_solution = candidate
                    step += 1
            self.keep_best()

    def keep_best(self):
        # record the history optimal solution
        current_fit = self.cal_fitness(self.current_solution)
        if current_fit < self.best_fit:
            self.best_fit = current_fit
            # Here the current_solution is a fixed variable, so the deepcopy is a must
            self.best_solution = copy.deepcopy(self.current_solution)

if __name__ == "__main__":
    total_nodes = 8
    graph_mat = abs(np.random.randn(total_nodes, total_nodes))
    inner_times = 10
    T_start = 100
    T_end = 2
    param = 0.96
    initial_solution = range(total_nodes)
    random.shuffle(initial_solution)
    SA = SimulatedAnnealing(graph_mat, param, inner_times, T_start, T_end, initial_solution)
    SA.keep_best()
    while SA.current_temperature < T_end:
        SA.inner_loop()
        SA.update_temperature()

    print SA.best_solution
    print SA.best_fit


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值