Threshold function with BP neural network

本文介绍了在多标签学习中,阈值函数如何用于确定未见实例的正确标签集。通常,通过对每个标签的真实值输出f(x, y)与阈值函数t(x)进行校准来实现这一目标。阈值校准可以通过两种策略完成:常数函数或从训练样例诱导。第一种策略是通过最小化训练集和测试集之间的多标签指示器的差异来设置校准常数,通常选择0.5。第二种策略假设t(x)为线性模型t(x) = w * f(x) + b,并基于训练集解决线性最小二乘问题来求解权重向量w和偏置b。" 113980998,10541559,Yii2数据库表结构缓存优化与清除指南,"['Yii框架', '数据库管理', '缓存技术', 'PHP开发', '性能优化']
摘要由CSDN通过智能技术生成
   Threshold function is a common practice in multi-label learning to return as the learned model. In this case, in order to decide the proper label set for unseen instance, the real-valued ouput f(x, y) on each label should be calibrated against the thresholding function output t(x)
   Generally, threshold calibration can be accomplished with two strategies. i.e. setting t(x) as constant function or inducing t(x) from the training examples. For the first strategy, the calibration constant can be set to minimize the difference on certain multi-label indicator between the training set and test set. Of course, 0.5 is the popular choice for calibration constant. For the second strategy, the popular is to assume a linear model for t(x): t(x) = w * f(x) + b.To work out the q-dimensional weight vector w and b, the following linear least squares problem is solved based on the training set D. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值