中国货币政策的动态有效性研究--基于 TVP-SV-FAVAR 模型的实证分析

本文采用TVP-SV-FAVAR模型对中国货币政策的动态有效性进行深入分析,探讨数量型和价格型货币政策对宏观经济的不同影响机制。通过对历史数据的实证研究,揭示了货币政策在应对经济结构变化和外部冲击时的动态调整,为理解“价格之谜”提供了新的解释,并对未来政策制定提供了参考。
摘要由CSDN通过智能技术生成

最近看到有小伙伴留言FAVAR模型,我之前也没接触过这个模型,然后拜读了下面这篇文章,写下简略的读书笔记。希望各位小伙伴批评指正,一起学习!

【公众号】:经济知识综合


中国货币政策的动态有效性研究–基于 TVP-SV-FAVAR 模型的实证分析

1. 引言

文章创新点:

  1. 采用TVP-SV-FAVAR 模型,将中国经济发展过程中的结构突变特征考虑在内。并对货币政策的动态有效性进行研究,
  2. 分别对数量型货币政策和价格型货币政策对宏观经济的调控进行研究,最终发现两种货币政策的影响机制有所不同。
  3. 对“价格之谜”有一定的解释力度。

这篇文章的引言层层递进,抓住了主要问题,从我国的经济发展出发,说明我国的经济结构和宏观调控的结构性变革,同时将货币政策的有效性及其动态变化考虑在内,因此作者选用TVP-SV-FAVAR模型,对中国货币政策的有效性及其特征变化进行实证分析。

在文献综述部分,作者首先针对货币政策的有效性进行讨论 ,部分学者认为货币政策是中性的,即货币政策对经济发展没有显著影响,部分学者对1978-2000年和1994-2010年的中国货币政策有效性进行实证,结论均支持长期货币中性。然而,更多的学者持货币政策“非中性”的观点,认为货币政策对于经济系统具有重要的调控作用。

然后作者针对货币政策的传导机制展开讨论,Taylor 认为利率是唯一能够与物价和经济增长保持长期稳定关系的变量,这表明利率与物价和经济增长之间存在着协整关系,调整利率应该成为货币当局的主要操作方式。Meltzer(1995)货币政策能够改变资产价格, 从而引起需求和产出改变。周英章和蒋振声(2002)认为中国的货币政策是通过信贷渠道和货币渠道的共同传导发挥作用的, 相比之下信贷渠道占主导地位。

然后作者分析了TVP-SV-FAVAR 模型对于现有问题的实用性。

2. 模型设定:

2.1 SVAR模型

y t \boldsymbol{y}_{t} yt K × 1 K \times 1 K×1阶的观察变量, A , F 1 , … , F s   A, F_{1}, \ldots, F_{s}~ A,F1,,Fs  K × K K \times K K×K阶系数矩阵, u t u_{t} ut K × 1 K \times 1 K×1阶的结构扰动,假定 $ u t ∼ N ( 0 , Σ Σ ) u_{t} \sim N(0, \Sigma \Sigma) utN(0,ΣΣ)

A y t = F 1 y t − 1 + ⋯ + F s y t − s + u t , t = s + 1 , … , n A \boldsymbol{y}_{t} = F_{1} \boldsymbol{y}_{t-1}+\cdots+F_{s} \boldsymbol{y}_{t-s}+u_{t}, \quad t=s+1, \ldots, n Ayt=F1yt1++Fsyts+ut,t=s+1,,n

通过递归识别来具体结构扰动之间的同步关系,假定 A A A是下三角阵,这涉及到SVAR系统的理论机制设置,A矩阵左乘以 y t {y}_{t} yt来描述 y t {y}_{t} yt内部的同期影响。

Σ = ( σ 1 0 ⋯ 0 0 ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ 0 0 ⋯ 0 σ k ) \Sigma=\left(\begin{array}{cccc} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_{k} \end{array}\right) Σ=σ1000000σk A = ( 1 0 ⋯ 0 a 21 ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ 0 a k 1 ⋯ a k , k − 1 1 ) A=\left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ a_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{k 1} & \cdots & a_{k, k-1} & 1 \end{array}\right) A=1a21ak10ak,k1001

Reduced Form of VAR Model:,直接求解SAVR,不易求解,需转化为Reduced Form,这就需要判断A矩阵是否可逆

y t = B 1 y t − 1 + ⋯ + B s y t − s + A − 1 Σ ε t , ε t ∼ N ( 0 , I k ) \boldsymbol{y}_{t}=B_{1} \boldsymbol{y}_{t-1}+\cdots+B_{s} \boldsymbol{y}_{t-s}+A^{-1} \Sigma \varepsilon_{t}, \quad \varepsilon_{t} \sim N\left(0, I_{k}\right) yt=B1yt1++Bsyts+A1Σεt,εtN(0,Ik)

其中, B i = A − 1 F i ,  for  i = 1 , … , s B_{i}=A^{-1} F_{i}, \text { for } i=1, \ldots, s Bi=A1Fi, for i=1,,s ,将 B i B_i Bi的元素按照行进行堆叠生成 β ( k 2 s × 1  vector  ) \boldsymbol{\beta}\left(k^{2} s \times 1 \text { vector }\right) β(k2s×1 vector ),定义: X t = I k ⊗ ( y t − 1 ′ , … , y t − s ′ ) X_{t}=I_{k} \otimes\left(\boldsymbol{y}_{t-1}^{\prime}, \ldots, \boldsymbol{y}_{t-s}^{\prime}\right) Xt=Ik(yt1,,yts) ⊗ \otimes 代表克罗内克积,

y t = X t β + A − 1 Σ ε t \boldsymbol{y}_{t}=X_{t} \boldsymbol{\beta}+A^{-1} \Sigma \varepsilon_{t} yt=Xtβ+A1Σεt

2.2 FAVAR模型(向量增强自回归模型)

所有的参数都不随时间变化。

[ F t Y t ] = B 1 [ F t − 1 Y t − 1 ] + ⋯ + B p [ F t − p Y t − p ] + v t (1) \left[\begin{array}{l} F_{t} \\ Y_{t} \end{array}\right]=B_{1}\left[\begin{array}{l} F_{t-1} \\ Y_{t-1} \end{array}\right]+\cdots+B_{p}\left[\begin{array}{l} F_{t-p} \\ Y_{t-p} \end{array}\right]+v_{t} \tag{1} [FtYt]=B1[Ft1Yt1]++Bp[FtpYtp]+vt(1)

  F t   ~F_t~  Ft 为潜在因子构成的   K × 1   ~K \times1~  K×1 维向量, Y t   Y_t~ Yt 为可观测变量和货币政策工具变量构成的 L × 1 L\times1 L×1维向量;   B i ,   i = 1 , 2 , ⋯   , p   ~B_{i},~ i= 1,2,\cdots,p~  Bi, i=1,2,,p    ( K + L ) × ( K + L )   ~(K+L)\times(K+L)~  K+L×K+L 的系数矩阵; v t ∼ N ( 0 , Ω )   v_{t} \sim N(0,\Omega)~ vtN(0,Ω)  Ω \Omega Ω   ( K + L ) × ( K + L )   ~(K+L)\times(K+L)~  K+L×K+L 的协方差矩阵。

X t = Λ f F t + Λ y Y t + e t (2) X_{t}=\Lambda^{f} F_{t}+\Lambda^{y} Y_{t}+e_{t} \tag{2} Xt=ΛfFt+ΛyYt+et(2)

X t   X_{t}~ Xt 表示经济系统中存在的大量时间序列,维度是   N × 1   ~N \times1~  N×1 向量,且   K + L ≪ 1   ~K+L \ll1~  K+L1 
Λ f , Λ y   \Lambda^{f},\Lambda^{y}~ Λf,Λy 分别为 F t , Y t   F^{t},Y^{t}~ Ft,Yt 的因子载荷矩阵,其维度分别是   N × K   ~N \times K~  N×K ,   N × L   ~N \times L~  N×L ; e t ∼ N ( 0 , H ) e_{t} \sim N(0,H) etN(0,H), H H H 是一个对角矩阵,同时假定扰动项 e t e_{t} et 与潜在因子 F t F_t Ft不相关,其自身也不存在序列相关,即:
E ( e i , t F t ) = 0 , E ( e i , t e j , s ) = 0 ( i , j = 1 , ⋯   , N ; t s = 1 , ⋯   , T ; i ≠ j , t ≠ s ) E\left(e_{i, t} F_{t}\right)=0, E\left(e_{i, t} e_{j, s}\right)=0 \quad (i, j=1, \cdots, N ; ts=1, \cdots, T ; i \neq j, t \neq s) E(ei,tFt)=0,E(ei,tej,s)=0(i,j=1,,N;ts=1,,T;i=j,t=s)

2.3 TVP模型

Regression(回归):
y t = x t ′ β + z t ′ α t + ε t , ε t ∼ N ( 0 , σ t 2 ) , t = 1 , … , n y_{t}=x_{t}^{\prime} \beta+z_{t}^{\prime} \alpha_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \sim N\left(0, \sigma_{t}^{2}\right), \quad t=1, \ldots, n yt=xtβ+ztαt+εt,εtN(0,σt2),t=1,,n

Time-Varying coefficients(时变系数):

α t + 1 = α t + u t , u t ∼ N ( 0 , Σ ) , t = 0 , … , n − 1 \alpha_{t+1}=\alpha_{t}+u_{t}, \quad u_{t} \sim N(0, \Sigma), \quad t=0, \ldots, n-1 αt+1=αt+ut,utN(0,Σ),t=0,,n1

Stochastic volatility(随机波动率):

σ t 2 = γ exp ⁡ ( h t ) , h t + 1 = ϕ h t + η t , η t ∼ N ( 0 , σ n 2 ) , t = 0 , … , n − 1 \sigma_{t}^{2}=\gamma \exp \left(h_{t}\right), \quad h_{t+1}=\phi h_{t}+\eta_{t}, \quad \eta_{t} \sim N\left(0, \sigma_{n}^{2}\right), \quad t=0, \ldots, n-1 σt2=γexp(ht),ht+1=ϕht+ηt,ηtN(0,σn2),t=0,,n1

y t y_t yt是标量; x t x_t xt , z t z_t zt分别是 k × 1 k \times 1 k×1 p × 1 p \times 1 p×1维向量; β \beta β k × 1 k \times 1 k×1阶常系数; α t \alpha_t αt p × 1 p \times 1 p×1阶时变系数, h t h_t ht 是随机波动率。

初始化:假定 α 0 = 0 , u 0 ∼ N ( 0 , Σ 0 ) , γ > 0 ,   h 0 = 0 \alpha_{0}=0,u_{0} \sim N\left(0, \Sigma_{0}\right), \gamma>0, ~ h_{0}=0 α0=0,u0N(0,Σ0),γ>0, h0=0

2.4 TVP-SV-VAR模型:

与前文 2.1节 SAVR模型相呼应,TVP-SV-VAR模型为:

y t = X t β t + A t − 1 Σ t ε t , t = s + 1 , … , n (TVP-SV-VAR) \boldsymbol{y}_{t}=X_{t} \boldsymbol{\beta}_{t}+A_{t}^{-1} \Sigma_{t} \varepsilon_{t}, \quad t=s+1, \ldots, n \tag{TVP-SV-VAR} yt=Xtβt+At1Σtεt,t=s+1,,n(TVP-SV-VAR)
系数 β t \boldsymbol{\beta}_{t} βt,参数 A t A_{t} At, Σ t \Sigma_{t} Σt 都是时变的,[Primiceri (2005)] 提出 a t = [ a 21 T a 31 T ⋮ a k , k − 1 T ] \boldsymbol{a}_{t}=\begin{bmatrix} a_{21}^{T} \\ a_{31}^{T}\\ \vdots\\ a_{k, k-1}^{T} \end{bmatrix} at=a21Ta31Tak,k1T 成为下三角矩阵 A t A_t At 的堆叠矩阵, h t = [ h 1 t T h 2 t T ⋮ h k t T ] \boldsymbol{h}_{t}=\begin{bmatrix} h_{1 t}^{T} \\ h_{2 t}^{T}\\ \vdots\\ h_{k t}^{T} \end{bmatrix} ht=h1tTh2tThktT,并且 h j t = log ⁡ σ j t 2 , j = 1 , … , k , t = s + 1 , … , n h_{j t}=\log \sigma_{j t}^{2}, j=1, \ldots, k, t=s+1, \ldots, n hjt=logσjt2,j=1,,k,t=s+1,,n

假定TVP-SV-VAR的参数服从以下随机游走过程:

β t + 1 = β t + u β t a t + 1 = a t + u a t h t + 1 = h t + u h t \begin{aligned} &\boldsymbol{\beta}_{t+1}=\boldsymbol{\beta}_{t}+u_{\beta t}\quad \\ &\boldsymbol{a}_{t+1}=\boldsymbol{a}_{t}+u_{a t} \quad \\ &\boldsymbol{h}_{t+1}=\boldsymbol{h}_{t}+u_{h t} \end{aligned} βt+1=βt+uβtat+1=at+uatht+1=ht+uht

β s + 1 ∼ N ( μ β 0 , Σ β 0 ) , a s + 1 ∼ N ( μ a 0 , Σ a 0 ) , N ( μ h 0 , h s + 1 ∼ Σ h 0 ) \boldsymbol{\beta}_{s+1} \sim N\left(\mu_{\beta_{0}}, \Sigma_{\beta_{0}}\right), \boldsymbol{a}_{s+1} \sim N\left(\mu_{a_{0}}, \Sigma_{a_{0}}\right),N\left(\mu_{h_{0}}, \boldsymbol{h}_{s+1} \sim\Sigma_{h_{0}}\right) βs+1N(μβ0,Σβ0),as+1N(μa0,Σa0),N(μh0,hs+1Σh0)
( ε t u β t u a t u h t ) ∼ N ( 0 , ( I O O O O Σ β O O O O Σ a O O O O Σ h ) ) \left(\begin{array}{c} \varepsilon_{t} \\ u_{\beta t} \\ u_{a t} \\ u_{h t} \end{array}\right) \sim N\left(0,\left(\begin{array}{cccc} I & O & O & O \\ O & \Sigma_{\beta} & O & O \\ O & O & \Sigma_{a} & O \\ O & O & O & \Sigma_{h} \end{array}\right)\right) εtuβtuatuhtN0,IOOOOΣβOOOOΣaOOOOΣh

nakajima的matlab code运行结果中,共可以发现七张图,其中图三,图四是针对SVAR结构中的A矩阵的元素绘制的,其中图四为A矩阵的逆矩阵,表示其影响机制上的影响关系。下图是图四matlab code 运行结果的图四。
图四
怎么判断运行结果的优劣?这里用的是MCMC抽样方法去学习参数,最终通过贝叶斯估计近确推断参数的后验分布,上述matlab code 运行结果的图三、图四均为A矩阵元素的后验均值,如果这个分布的5% 分位点 和 95% 分位点都不包括0 ,那么这个参数的估计是显著的。下图中 a 2 t a_{2t} a2t后期的后验均值在0附近波动,说明其估计不显著!

图三

2.5 TVP-SV-FAVAR模型,

参数随时间而变化,:
[ F t Y t ] = B 1 , t [ F t − 1 Y t − 1 ] + ⋯ + B p , t [ F t − p Y t − p ] + v t (3) \left[\begin{array}{l} F_{t} \\ Y_{t} \end{array}\right]=B_{1, t}\left[\begin{array}{l} F_{t-1} \\ Y_{t-1} \end{array}\right]+\cdots+B_{p, t}\left[\begin{array}{l} F_{t-p} \\ Y_{t-p} \end{array}\right]+v_{t}\tag{3} [FtYt]=B1,t[Ft1Yt1]++Bp,t[FtpYtp]+vt(3)

  F t   ~F_t~  Ft 为潜在因子构成的   K × 1   ~K \times1~  K×1 维向量, Y t   Y_t~ Yt 为可观测变量和货币政策工具变量构成的 L × 1 L\times1 L×1维向量;   B i ,   i = 1 , 2 , ⋯   , p   , t = 1 , 2 , ⋯   , T   ~B_{i},~ i= 1,2,\cdots,p~, t = 1,2,\cdots,T~  Bi, i=1,2,,p ,t=1,2,,T  M × M M × M M×M 阶时变系数矩阵;   v t ∼ N ( 0 , Ω T ) ~v_{t} \sim N\left(0, \Omega_{T}\right)  vtN(0,ΩT) M × M M × M M×M 阶时变协方差矩阵。

方程(2)和方程(3)分别构成了TVP-SV-FAVAR模型模型的主体,分别被称为“因子方程”和“时变参数FAVAR方程

参数估计过程:

首先对协方差矩阵   Ω t   ~\Omega_t~  Ωt 进行分解
A t Ω t A t ′ = ∑ t ∑ t ⟹ Ω t = A t − 1 ∑ t ∑ t ( A t − 1 ) A_{t} \Omega_{t} A_{t}^{\prime}=\sum_{t} \sum_{t} \quad \Longrightarrow \quad\Omega_{t}=A_{t}^{-1} \sum_{t} \sum_{t}\left(A_{t}^{-1}\right) AtΩtAt=ttΩt=At1tt(At1)

其中 Σ t \Sigma_t Σt是一个对角矩阵, ∑ t = diag ⁡ ( σ 1 , t , ⋯   , σ M , t )   \sum_{t}=\operatorname{diag}\left(\sigma_{1, t}, \cdots, \sigma_{M, t}\right)~ t=diag(σ1,t,,σM,t) , A t A_{t} At是下三角矩阵,
A t = [ 1 0 ⋯ 0 a 21 , t 1 ⋱ ⋮ ⋮ ⋱ ⋱ 0 a M 1 , t ⋯ a M ( M − 1 ) , t 1 ] A_{t}=\left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ a_{21, t} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{M 1, t} & \cdots & a_{M(M-1), t} & 1 \end{array}\right] At=1a21,taM1,t01aM(M1),t001

将(3)中的系数矩阵 B t B_t Bt按照行元素重新堆叠
B t = ( vec ⁡ ( B 1 , t ) ′ , ⋯   , vec ⁡ ( B p , t ) ′ ) ′ log ⁡ σ t = ( log ⁡ σ 1 , t ′ , ⋯   , log ⁡ σ M , t ′ ) , α t = ( a j 1 , t ′ , ⋯   , a j ( j − 1 ) , t ′ ) ′ , j = 1 , ⋯   , M ∘ \begin{aligned} B_{t}&=\left(\operatorname{vec}\left(B_{1, t}\right)^{\prime}, \cdots, \operatorname{vec}\left(B_{p, t}\right)^{\prime}\right)^{\prime} \\ \log \sigma_{t} & =(\log\left.\sigma_{1, t}^{\prime}, \cdots, \log \sigma_{M, t}^{\prime}\right),\\ \alpha_{t} &= \left(a_{j 1, t}^{\prime}, \cdots, a_{j(j-1), t}^{\prime}\right)^{\prime}, j=1, \cdots, M_{\circ} \end{aligned} Btlogσtαt=(vec(B1,t),,vec(Bp,t))=(logσ1,t,,logσM,t),=(aj1,t,,aj(j1),t),j=1,,M
假定   B t , α t , log ⁡ σ t   ~B_{t},\alpha_{t},\log \sigma_{t}~  Bt,αt,logσt 服从一下的随机游走过程:
B t = B t − 1 + J t B η t B α t = α t − 1 + J t α η t α log ⁡ σ t = log ⁡ σ t − 1 + J t σ η t σ \begin{aligned} B_{t} &=B_{t-1}+J_{t}^{B} \eta_{t}^{B} \\ \alpha_{t} &=\alpha_{t-1}+J_{t}^{\alpha} \eta_{t}^{\alpha} \\ \log \sigma_{t} &=\log \sigma_{t-1}+J_{t}^{\sigma} \eta_{t}^{\sigma} \end{aligned} Btαtlogσt=Bt1+JtBηtB=αt1+Jtαηtα=logσt1+Jtσηtσ
θ t ∈ { B t , α t , log ⁡ σ t } \theta_{t} \in\left\{B_{t}, \alpha_{t}, \log \sigma_{t}\right\} θt{Bt,αt,logσt},其中   η t θ ∼ N ( 0 , Q θ )   ~\eta_{t}^{\theta} \sim N\left(0, Q_{\theta}\right)~  ηtθN(0,Qθ) 为互相独立的冲击变量, Q θ Q_{\theta} Qθ是向量参数的   B t , α t , log ⁡ σ t   ~B_{t}, \alpha_{t}, \log \sigma_{t}~  Bt,αt,logσt 冲击协方差矩阵。 J θ J_{\theta} Jθ取值为 0 或 1, J θ = 1   J_{\theta} = 1~ Jθ=1 表示参数是时变的, J θ = 0   J_{\theta} = 0~ Jθ=0 表示参数是固定的;

G t = Λ Z t + W u t G Z t = B t ( L ) Z t + A t − 1 ∑ t u t Z (4) \begin{array}{c} G_{t}=\Lambda Z_{t}+W u_{t}^{G} \tag{4} \\ Z_{t}=B_{t}(L) Z_{t}+A_{t}^{-1} \sum_{t} u_{t}^{Z} \end{array} Gt=ΛZt+WutGZt=Bt(L)Zt+At1tutZ(4)
G t = [ X t Y t ]    Z t = [ F t Y t ] W = diag ⁡ ( exp ⁡ ( h 1 / 2 ) , ⋯   , exp ⁡ ( h N / 2 ) , ⋯   , exp ⁡ ( H N / 2 ) , 0 1 × L )    ⟹ W W ′ = [ H 0 1 × L ] Λ = [ Λ f Λ y 0 L × K I L ] B t ( L ) = B 1 , t L + ⋯ + B p , t L p \begin{aligned} G_{t}& =\begin{bmatrix} X_{t} \\ Y_{t} \end{bmatrix} \ \ Z_{t}=\begin{bmatrix} F_{t} \\ Y_{t} \end{bmatrix} \\ W & =\operatorname{diag}\left(\exp \left(h_{1} / 2\right), \cdots, \exp \left(h_{N} / 2\right), \cdots, \exp \left(H_{N} / 2\right), 0_{1 \times L}\right) \ \ \\ \Longrightarrow & W W^{\prime}=\begin{bmatrix} H \\ 0_{1} \times L \end{bmatrix} \quad \Lambda=\left[\begin{array}{ll} \Lambda^{f} & \Lambda^{y} \\ 0_{L \times K} & I_{L} \end{array}\right]\\ & B_{t}(L)=B_{1, t} L+\cdots+B_{p, t} L^{p} \end{aligned} GtW=[XtYt]  Zt=[FtYt]=diag(exp(h1/2),,exp(hN/2),,exp(HN/2),01×L)  WW=[H01×L]Λ=[Λf0L×KΛyIL]Bt(L)=B1,tL++Bp,tLp

( u t G , u t Z ) \left(u_{t}^{G}, u_{t}^{Z}\right) (utG,utZ)是取自标准正态分布且相互独立的扰动项,

通过方程(4)向量移动平均(VMA)表达式:

G t = Λ B ~ t ( L ) − 1 A t − 1 ∑ t u t Z + W u t G = Δ t ( L ) ζ t (5) G_{t}=\Lambda \tilde{B}_{t}(L)^{-1} A_{t}^{-1} \sum_{t} u_{t}^{Z}+W u_{t}^{G}=\Delta_{t}(L) \zeta_{t} \tag{5} Gt=ΛB~t(L)1At1tutZ+WutG=Δt(L)ζt(5)

其中, B ~ t ( L ) = I − B t ( L ) , ζ t ∼ N ( 0 , 1 ) \tilde{B}_{t}(L)=I-B_{t}(L), \zeta_{t} \sim N(0,1) B~t(L)=IBt(L),ζtN(0,1),可以对模型(5)进行脉冲响应分析

Step1 : 利用主成分分析法, 从宏观经济信息集 X t X_t Xt 提取前 K 个主成分构成潜在因子 F t F_t Ft
Step2:基于第一步中提取的潜在因子使用MCMC方法对模型参数进行估计。

2.6 主成分分析法提取潜在因子:

Method1: Bernanke 等( 2005) 提出的方案,首先将信息集 X t X_t Xt中的所有要素分为“慢速变化”和“快速变化”两组,然后分别对和“慢速变量”进行主成分分析, 提取前K个主成分构成信息集合 P C t PC_t PCt P C t s PC_t^{s} PCts,最后, 对回归方程:
P C t = β s P C t s + β Y Y t + μ t PC_t = \beta_{s} PC_t^{s} + \beta_{Y}Y_{t} + \mu_{t} PCt=βsPCts+βYYt+μt

由此得到潜在因子 F t F_{t} Ft的估计值, F ^ t = P C t − β Y Y t \hat{F}_{t} = PC_t -\beta_{Y}Y_{t} F^t=PCtβYYt, 将其代入方程(3) 即可对模型参数进行估计,该方案得到的潜在因子称为“BBE 因子”, 记为TVP-SV-FAVAR-BBE

Method2:由 Belviso 和 Milani( 2006) 提出首先将信息集 X t X_t Xt中的所有变量分为 I I I组: X t 1 , X t 2 , ⋯   , X t I X_{t}^{1},X_{t}^{2}, \cdots , X_{t}^{I} Xt1,Xt2,,XtI, 其中 X t i X_{t}^{i} Xti N i × 1 N_{i} \times 1 Ni×1 维向量, ∑ i I N i = N \sum_{i}^{I} N_{i} = N iINi=N, 然后, 对每一组变量进行主成分分析, 得到相应的潜在因子: F t 1 , F t 2 , ⋯   , F t I F_{t}^{1} , F_{t}^{2},\cdots ,F_{t}^{I} Ft1,Ft2,,FtI,其中 F t i F_{t}^{i} Fti K i × 1 K_{i} \times 1 Ki×1 维向量, ∑ i I K i = K \sum_{i}^{I} K_{i} = K iIKi=K。最后, 将 F t 1 , F t 2 , ⋯   , F t I F_{t}^{1} , F_{t}^{2},\cdots ,F_{t}^{I} Ft1,Ft2,,FtI代入方程(3)即可对模型参数进行估计。得到的潜在因子我们将其称为“分组因子”,对应的模型记为 TVPSV-FAVAR-Block

3. 实证研究:

3.1 变量选取与数据说明:

  • 共选取了 136 个经济指标, 作为描述宏观经济情况的变量。
  • 数据来源,中经网统计数据库,部分数据来自于 Wind 数据库和 EIU 国家数据库
经济变量具体
实际经济活动变量工业增加值、消费、投资、进出口、财政收支、就业、工资等
货币、信贷和金融变量货币供应量、信贷、存贷款、股票市值、债券发行量等
利率和汇率变量包括各种利率和汇率指标
价格水平变量包括居民消费价格指数、工业生产者价格指数、企业商品交易价格指数、进出口价格指数等

3.2 数据清洗:

  1. 消除季节性因素,进行季节调整。
  2. FABAR 模型要求所有变量均转化为标准化的平稳序列
  3. 平稳化处理,标准化处理。

平稳化处理主要有两种方式: 一是数据本身就平稳的直接取原值; 二是对非平稳数据做一阶对数差分处理。

3.3 参数时变特征检验:

采用 Koop 等( 2009) 的 S 个抽样序列, 那么就可以得到 J t θ J_{t}^{\theta} Jtθ的平均后验概率值,计算公式:

E ( J t θ ∣ D a t a ) = 1 S ∑ s = 1 S ( J t θ ) s , θ t ∈ { B t , α t , log ⁡ σ t } E\left(J_{t}^{\theta} \mid D a t a\right)=\frac{1}{S} \sum_{s=1}^{S}\left(J_{t}^{\theta}\right)_{s}, \theta_{t} \in\left\{B_{t}, \alpha_{t}, \log \sigma_{t}\right\} E(JtθData)=S1s=1S(Jtθ)s,θt{Bt,αt,logσt}

其中, J t ( s ) θ J_{t(s)}^{\theta} Jt(s)θ J t θ J_{t}^{\theta} Jtθ的第 s 个 MCMC 抽样序列。

通过考察 FAVAR 模型的估计参数在样本考察期发生状态转移的概率,如果后验概率 p ( π θ ∣  Data  ) p\left(\pi_{\theta} \mid \text { Data }\right) p(πθ Data )接近于1, 那么就可以认为模型的参数是时变的。

3.4 实证结果

根据 Korobilis( 2013) 对于初始条件的设定, 时变参数 FVAR 方程参数的先验分布为:
B 0 ∼ N ( B ‾ , V ‾ ) Q B − 1 ∼ W ( 0.005 × ( dim ⁡ ( B ) + 1 ) × V ‾ , ( dim ⁡ ( B ) + 1 ) ) dim ⁡ ( B ) = M × M × P α 0 ∼ N ( 0 , 4 I ) Q α − 1 ∼ W ( 0.01 × ( dim ⁡ ( α ) + 1 ) × I , ( dim ⁡ ( α ) + 1 ) ) dim ⁡ ( α ) = M ( M − 1 ) / 2 log ⁡ σ 0 ∼ N ( 0 , 4 I ) Q σ − 1 ∼ W ( 0.0001 × ( dim ⁡ ( σ ) + 1 ) × I , ( dim ⁡ ( σ ) + 1 ) ) dim ⁡ ( σ ) = M [ Λ i f , Λ i y ] ∼ N ( 0 1 × M , 10 I M ) , h i 0 ∼ N ( 0 , 4 ) , σ h − 1 ∼  Gamma  ( 0.01 , 0.01 ) , i = 1 , ⋯   , N \begin{aligned} &B_{0} \sim N(\underline{B},\underline{V}) \\ &Q_{B}^{-1} \sim W(0.005 \times(\operatorname{dim}(B)+1) \times \underline{V},(\operatorname{dim}(B)+1)) \\ & \operatorname{dim}(B)=M \times M \times P \\ \\ & \alpha_{0} \sim N(0,4 I) \\ & Q_{\alpha}^{-1} \sim W(0.01 \times(\operatorname{dim}(\alpha)+1) \times I,(\operatorname{dim}(\alpha)+1)) \\ & \operatorname{dim}(\alpha)=M(M-1) / 2 \\ \\ & \log \sigma_{0} \sim N(0,4 I) \\ &Q_{\sigma}^{-1} \sim W(0.0001 \times(\operatorname{dim}(\sigma)+1) \times I,(\operatorname{dim}(\sigma)+1)) \\ & \operatorname{dim}(\sigma)=M \\ \\ & \left[\Lambda_{i}^{f}, \Lambda_{i}^{y}\right] \sim N\left(0_{1 \times M},\right.\left.10 I_{M}\right), \\ &h_{i 0} \sim N(0,4),\\ & \sigma_{h}^{-1} \sim \text { Gamma }(0.01,0.01), i=1, \cdots, N \end{aligned} B0N(B,V)QB1W(0.005×(dim(B)+1)×V,(dim(B)+1))dim(B)=M×M×Pα0N(0,4I)Qα1W(0.01×(dim(α)+1)×I,(dim(α)+1))dim(α)=M(M1)/2logσ0N(0,4I)Qσ1W(0.0001×(dim(σ)+1)×I,(dim(σ)+1))dim(σ)=M[Λif,Λiy]N(01×M,10IM),hi0N(0,4),σh1 Gamma (0.01,0.01),i=1,,N

其中, B ‾ \underline{B} B V ‾ \underline{V} V 的取值如下:即方程因变量自身一阶滞后变量系数的先验期望为 0.9, 其他变量的先验期望均为 0。
B ‾ i j τ = { 0.9 i = j , τ = 1 0  others  τ = 1 , ⋯   , p \underline{B}_{i j \tau}=\left\{\begin{array}{ll} 0.9 & i=j, \tau=1 \\ 0 & \text { others } \end{array} \quad \tau=1, \cdots, p\right. Bijτ={0.90i=j,τ=1 others τ=1,,p

s i 2 s_{i}^{2} si2是因变量 y i y_i yi 的单变量 p 阶自回归模型的残差; i = 1 , ⋯   , M ; j = 1 , ⋯   , M p i=1, \cdots, M ; j=1, \cdots, M p i=1,,M;j=1,,Mp
V ‾ i j t = { 1 τ 2 i = j 0.001 s i 2 τ 2 s j 2 i ≠ j τ = 1 , ⋯   , p \underline{V}_{i j t}=\left\{\begin{array}{lc} \frac{1}{\tau^{2}} & i=j \\ \frac{0.001 s_{i}^{2}}{\tau^{2} s_{j}^{2}} & i \neq j \end{array} \quad \tau=1, \cdots, p\right. Vijt={τ21τ2sj20.001si2i=ji=jτ=1,,p

3.5 分析过程

脉冲响应时点的选择: 原因在于其间发生了一系列重要的国内和国际事件,

  • 2005 年 7 月的人民币汇率制度改革、
  • 2007 年 8 月美国次贷危机爆发、
  • 2010 年欧洲主权债务危机爆发
  • 以及中国经济步入“新常态”。

在此期间, 我国的经济结构和经济发展环境均发生了重要的变化, 通过比较不同时点上
的脉冲响应结果, 有助于我们更好地考察货币政策效果的动态变化趋势和特征。

  1. 数量型货币政策的动态有效性

    随着经济全球化的发展,国际金融危机和欧债危机爆发后, 以美国、日本为代表的发达经济体持续推行的量化宽松政策制约了我国货币政策实施的自主性, 我国政策当局可能会被动跟随发达经济体调整货币政策, 这会影响货币政策的有效性。在此强调了经济系统的复杂性!

  2. 价格型货币政策的动态有效性

    对“价格之谜”进行了有效地解释。

4 主要结论

主要有三条结论,与引言部分的创新点相呼应,

最后,在未来一段时间内应该继续采用数量型调控和价格型调控相结合的调控模式, 同时使用数量型和价格型货币政策对国民经济进行调控, 充分发挥二者的协同效应, 以更好地促进国民经济的发展。进一步阐述了两种货币政策之间的关系

  • 9
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
在开始使用代码之前, 请仔细阅读此文件。此文件夹包含以下文件:___________________________________________________________________________________1)其他代码: B. TVP-FAVAR: 估计一个 TVP FAVAR。此代码用于演示只有, 它应该作为一个出发点, 以了解评估的工作原理 (在前往多个使用 DMA 的模型案例) 2)预测代码:a. 竞争 FCIs: 从我们收集的4现有 FCIs 的预测联邦储备银行B. DMA_TVP_FAVAR: 动态模型平均/选择的预测 (DMA/DMS),与相对 noninformative 之前C. DMA_TVP_FAVAR_TS: 动态模型平均/选择的预测 (DMA/DMS),培训样本前(此代码仅用于在线附录)FAVAR_PC_DOZ: homoskedastic FAVAR 与校长的预测组分和 Doz 等 (2011) 因素的估计 3)完整示例代码:DMA_probabilities: 绘制时变 DMA 概率, 预期数量变量和由 DMA 暗示的家庭护理(使用此代码复制图 4 & 5) 此外, 文件夹 "函数" 包含在估计期间调用的有用函数 (例如, mlag2 创建 VAR 滞后, 并且 Minn_prior_KOOP 在系数之前实现我们的明尼苏达州类型). 文件夹数据包含-猜测什么。但是, 要小心, 因为那里有两个数据集。第一个是文章中使用的 (xdata.dat, other_FCIs, ydata.dat)。但是, 我还有一个具有81个财务变量 (xdata_all) 的数据集, 仅由演示代码 TVP FAVAR 调用。在这个代码中, 我给你一个选项来加载这两个数据集中的任何一个来提取家庭护理 (为了了解算法是如何工作的)。变量的名称在. 席子文件 xnames. 垫。 如何使用代码:在每个文件的开头, 我有一个叫做 "用户输入" 的部分。请随时试用它。默认设置是在纸张中使用的, 例如 nlag=4 是 FAVAR 中滞后的数目)。 但是, 默认值的遗忘/衰变因素 (称为 l_1, l_2, l_3, l_4 在代码中, 但表示为本文) 对应于 TVP-FAVAR 模型。为了估计 FAVARFA-TVP 模型 (见纸), 你需要改变遗忘因子的值。设置 l_3=1 (离开 l_1 = l_2 = 0.96, l_4 = 0.99) 给出了 FA TVP VAR, 而设置 l_3 = l_4 = 1 (离开 l_1 = l_2 = 0.96) 给你 heteroskedastic FAVAR。您还可以通过将所有遗忘因子设置为1来获得 homoscedastic FAVAR, 但这不是本文中使用的模型 (因为我们解释这具有较低的预测性能)。 我已经设置了代码 DMA_probabilities 为了打印文件中显示的数字, 以选择的模型为条件 (例如, 遗忘因素的默认设置会给出 TVP-FAVAR 的概率)。对于预测代码的事情是半自动的, 因为我不喜欢设置 MATLAB 来计算预测结果和打印乳胶表 (更多的编程意味着更多的错误机会, 因此, 我更喜欢在 Excel 中手动计算平均值)。在这方面, 如果你想要 MSFEs 这些可以在数组 MSFE_DMA 中的代码末尾找到 (对于 DMA 情况, 类似于其他文件中的其他预测)。为了获得所有变量的平均 MSFE, 只需在 MATLAB 中使用平均值 () 函数:挤压 (平均 (MSFE_DMA (1: 末端-1,:, 1), 1) '% 为 h=1 步挤压 (平均 (MSFE_DMA (1: 末端-2,:, 2), 1) '% 为 h=2 步挤压 (平均 (MSFE_DMA (1: 末端-3,:, 3), 1) '% 为 h=3 步挤压 (平均 (MSFE_DMA (1: 末端-4,:, 4), 1) '% 为 h=4 步 健康警告:虽然一个 TVP FAVAR 是微不足道的估计, 你很快就会意识到, 预测递归与 219= 524288 模型 (正如我们在 DMA), 是一个相当的任务。您将需要一个非常强大的 PC 和大量的耐心, 或者是一个集群的服务器和 MATLAB 的并行处理工具箱 (这是我实际上做的, 即我是在我的大学中央集群远程提交 PBS 工作)。 在您尝试在您的 PC 上运行 DMA 代码之前, 我建议您在使用单个模型估计和递归预测时需要花费多少时间。您可以使用原始 DMA_TVP_FAVAR 代码来执行此项。在用户输入中有设置: var_no_dma = 1; 选择不应包含在 DMA 中的变量。上面的设置采用第一个变量 (& P500), 检查 varnames 所有20个变量的名称和顺序, 并始终将其包含在每个模型中, 从而使代码在其余的 219模型中进行 DMA。如果设置: var_no_dma = 1:20; 然后所有20个变量都包含在每个模型中, 0 个变量包含在 DMA 中。因此, 这等同于估计没有 DMA 的完整模型。选择: var_no_dma = [1 3 5 9 12 15]; 将始终包含每个因子模型中的变量 (13、59、1215), 并要求代码在剩余的14个变量中执行 DMA (因而 214= 16384 模型, 这对于旧 pc 仍然是很麻烦的)。 运行代码时请小心, 我们不承担对旧 pc 中可能发生的 CPU 过载造成的硬件损坏的责任..。此代码不适合完成初学者。然而, 经验较少的 MATLAB 用户和/或博士生应该能够很容易地理解附加的代码结合仔细研究的论文。我们不提供对此代码的支持。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值