统计地震学的一些概念

本文介绍了地震目录的作用,包括各国地震监测机构的数据,以及统计地震学中的大森-宇津定律和古登堡-里克特定律的应用。重点讲述了如何通过最大似然估计法估计模型参数,并阐述了AIC值在模型选择中的重要性。
摘要由CSDN通过智能技术生成

1. 地震目录是什么?

        地震目录是记录地震事件详细信息的数据库,通常由国家或地区的地震监测机构维护。不同国家的地震目录具有不同的格式,其中基础的信息包括每次地震的时间、地点、震级和深度信息(其中各个地区的完备性震级由于观测仪器的布设密集程度会有所不同),还可能包括地震波形记录、震源机制解、地质构造背景等详细数据。地震目录是地震研究、地震危险性评估和地震工程设计的重要基础。

        这里分别列出中国地震台网中心(https://www.ceic.ac.cn/speedsearch)、日本气象厅(https://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo_e.html)、美国地质调查局(Earthquakes | U.S. Geological Survey)的地震目录示例。

图1 中国地震台网中心地震目录示例
图1 中国地震台网中心地震目录示例

图2 日本气象厅地震目录示例
图2 日本气象厅地震目录示例

图3 美国地质调查局地震目录示例

 2. 统计地震学

        统计地震学作为地震学的分支,其主要是基于地震目录资料进行分析研究。地震学目前存在两个被广泛接受的标度律,分别是日本地震学家大森1894年发表在东京大学学报的余震衰减律(Omori’s Law),后被宇津修改,最后成为大森-宇津定律(Omori-Utus Law),见公式1,和古登堡-里克特1973年提出的震级频度统计关系(Gutenberg-Richter Law),见公式2.

        其中t是大震发生后的时间,nt是大震发生后t时刻震源区余震活动的频次(单位时间的地震数);n0和c为序列常数,因为地震序列不同而不同,P参数为幂参数。

        式中M为震级,N(M)为一定地区一定时间范围内发生的震级大于M的地震数。参数a为研究区背景地震活动性强度相关,b是描述研究区大小地震的比例。 

        这里简单列出部分模型:

        1)泊松分布模型

        假设地震是一个随机过程,每次地震发生的概率是相互独立的。见公式3.

        其中是研究区某级以上强震的平均年发生率,是概率密度函数和累计概率分布函数。这类模型的计算结果与计算时刻的起点无关,为非时变地震危险性预测模型(time-independent)。

        2)传染性余震序列模型(ETAS)

        ETAS模型以“大森-宇津”公式为基础,对余震进行计算。,其假设所有的余震均可按照“大森-宇津”公式激发自己的余震,假定主震发生的时刻为初始零时刻,在其后的一个观测时间段内的地震序列{(ti,Mi),i=1,2,3…N}的强度函数可以表示为,见公式4:

        其中 (t)为背景地震的发生率,Mi表示第i个事件的震级,ti表示第i个事件发生的事件,Mmin为参考震级,一般取完备性震级Mc,p表示地震序列衰减的快慢,p值越大衰减越快;a表示出发次级余震的能力,a值越大表示触发次级余震的能力越弱。对于震群型序列,一般a值小于1,当地震序列中无明显的被激发的次级余震时,a值一般大于1.

 3. 模型参数的最大似然估计如何进行?

        最大似然估计可以说是应用非常广泛的一种参数估计的方法。它的原理也很简单:利用已知的样本,找出最有可能生成该样本的参数。在地震学中就是根据实际发生的地震事件进行参数估计,这里以古登堡-里克特1973年提出的震级频度统计关系(Gutenberg-Richter Law)中的b值为例进行示例。

        由公式2可得

        若使用的目录最小完备性震级为MC,震级的分布函数F(M)为:    

        其概率密度函数为F(M)求导:                                                                                         

        对于实际的地震事件(Mii=12…N),其似然函数为:                                              

  

        最大似然的概念在于找到【参数b】使得实际事件出现的概率为最大值,这一步骤通过对似然函数进行求导=0.

        得到

  

        根据β和b的关系,可根据实际的地震事件求得b值。

 4.AIC值及主要用途

        AIC(Akaike Informational Criterion)用于比较模型的优劣,其表达式为:

 

        其中logL为给定模型的对数似然函数的最大值(观测资料在模型中出现的最可能的概率),k值为模型参数的个数。比较不同模型与资料的符合程度,小AIC值所对应的模型较优。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值