labelimg、labelme安装使用、对比和区别以及关于标注数据质量问题

作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处


目录

labelimg安装:

方式一:

方式二:

labelimg快捷键 

labelme安装这里就不多说了,方式差不多,建议 pip install方式

然后重点是两者的对比和区别:

 关于图片素材标注质量:


labelimg安装:

方式一:

安装:

pip install labelimg

打开:

labelimg

方式二:

从github 下载zip包  地址:https://github.com/tzutalin/labelImg

安装三方依赖库:

conda install pyqt=5
pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple/

解压labelimg进入其根目录,检查发现没有resources.py 但是有resources.qrc,将原来的resources.qrc文件转换成resources.py文件:

Pyrcc5 -o resources.py resources.qrc

将我们刚刚的labelImg-master文件夹里面的resources.py文件移动到libs里面:

在这里插入图片描述

 在labelimg根目录执行命令打开工具:

python labelimg.py

labelimg快捷键 

labelme安装这里就不多说了,方式差不多,建议 pip install方式

然后重点是两者的对比和区别:

先上图:

表格整理对比:

参考: Labelme和LabelImg使用(Win10)_Along1617188的博客-CSDN博客

labelimg标注某张图片生成的xml文件:

<?xml version='1.0' encoding='utf-8'?>
<annotation>
	<folder>JPEGImages</folder>
	<filename>1.bmp</filename>
	<path>E:\projects\pyHome\about_yolo\yolov5_bottleCap_defect_detection\VOCData\JPEGImages\1.bmp</path>
	<source>
		<database>Unknown</database>
	</source>
	<size>
		<width>1280</width>
		<height>960</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>defect</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>1</difficult>
		<bndbox>
			<xmin>589</xmin>
			<ymin>411</ymin>
			<xmax>701</xmax>
			<ymax>480</ymax>
		</bndbox>
	</object>
</annotation>

labelme标注一张图片生成的json文件:

{
  "version": "4.5.9",
  "flags": {},
  "shapes": [
    {
      "label": "normal",
      "points": [
        [
          584.6122448979592,
          412.3061224489796
        ],
        [
          708.0816326530612,
          484.7551020408163
        ]
      ],
      "group_id": null,
      "shape_type": "rectangle",
      "flags": {}
    }
  ],
  "imagePath": "1.bmp",
  "imageData": "iVBORw0KGgoAAA ...(省略一万字符) CYII=",
  "imageHeight": 960,
  "imageWidth": 1280
}

 关于图片素材标注质量:

        数据、算力、算法齐驱人工智能的三大马车我认为数据更重要,数据是人工智能的核心竞争力。算法再厉害,没有数据,也是巧妇难为无米之炊。每个家企业的算法虽有区别,但是算法通过数据不断投喂,可以不断学习进化,会越来越聪明,从而呈现出马太效应,强者恒强的效应。模型训练人员利用标注好的数据训练出模型算法,但人工标注的数据,往往甚至不可避免的会存在一些错标的数据,尤其是在对标注准则或者流程不完善时,错标就更常见了,所以有个岗位叫数据审核师

 训练数据的质量对于模型表现至关重要。我们用一致性和标注数据准确率来评估质量。

这里说的数据包含了素材的数量、质量、和标注框的质量,这里重点说一下标注框质量是如何影响模型的准确性的。

        目标矩形框太大、太小、位置是否偏移、目标类型标错,相当于你不断告诉神经网络目标是这样的那样的类型是什么什么,最后低质量的数据让神经网络真的"神经"了,影响了神经网络对矩形方框中真实内容的判断。实践证明,即使数据的数量和质量都很好,标注的框质量比较差也会导致模型效果越来越差。

        保证标注框质量较高的几个点:框的大小合适、位置合适;类型准确;不要漏掉小目标;目标切断显示不全的也不要漏标;模糊的人无法判定的就不要了;标注多角度的目标(高质量的数据会包含多角度的素材)

参考: 改变标注质量,数据审核让人工智能变得更加精准 - 知乎

            训练机器学习模型时如何评估数据质量 - it610.com

            [AI开发]目标检测之素材标注 - 周见智 - 博客园

【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值