利用数学公式计算点到线的距离

作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处


目录

场景:

数学原理和公式详解:

已知直线上两点求直线的一般式方程:

点到线的距离公式为:


场景:

        很多情况下我们要判断平行线之间的距离,其实就是点到线的距离,这时候我们要借助线的一般方程式来完成。

数学原理和公式详解:

        常用的直线方程有一般式 点斜式 截距式 斜截式 两点式等等。除了一般式方程,它们要么不能支持所有情况下的直线(比如跟坐标轴垂直或者平行),要么不能支持所有情况下的点(比如x坐标相等,或者y坐标相等)。所以一般式方程在用计算机处理二维图形数据时特别有用。

  • 已知直线上两点求直线的一般式方程:

已知直线上的两点P1(X1,Y1) P2(X2,Y2), P1 P2两点不重合。则直线的一般式方程AX+BY+C=0中,A B C分别等于:
A = Y2 - Y1
B = X1 - X2
C = X2*Y1 - X1*Y2

  • 点到线的距离公式为:

        d = |A*x0 + B*y0 + C| / √(A^2 + B^2)

实现代码:

import math

# ***** 点到直线的距离:P到AB的距离*****
# P为线外一点,AB为线段两个端点
def getDist_P2L(PointP, Pointa, Pointb):
    """计算点到直线的距离
        PointP:定点坐标
        Pointa:直线a点坐标
        Pointb:直线b点坐标
    """
    # 求直线方程
    A = 0
    B = 0
    C = 0
    A = Pointa[1] - Pointb[1]
    B = Pointb[0] - Pointa[0]
    C = Pointa[0] * Pointb[1] - Pointa[1] * Pointb[0]
    # 代入点到直线距离公式
    distance = 0
    distance = (A * PointP[0] + B * PointP[1] + C) / math.sqrt(A * A + B * B)

    return distance

【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值