Python解线性方程组:列主元Gauss消元法

列主元Gauss消元法各大教科书都有,是很基础的解方程组方法。其主要思想是把方程组化为上三角方程组,然后通过回代的方法求得方程组的解。

Gauss的具体原理请参照数值分析的相关教课书这里不再赘述。


算法流程

输入:增广矩阵
输出:方程组的解,或方程组无解的提示

  1. 对于k = 1,2,…,n-1,执行步骤2到步骤5
  2. 选择第k列中最大的元素,将其所在行换到第k行。如果最大元素是0,则方程无解,程序退出
  3. 对于i = k + 1,…,n,计算
    l i k = a i k a k k    a i j = a i j − l i k a k j    b i = b i − l i k b k l_{ik} = \frac{a_{ik}}{a_{kk}}\\ \;\\ a_{ij}=a_{ij}-l_{ik} a_{kj}\\ \;\\ b_{i}=b_{i}-l_{ik} b_{k} lik=akkaikaij=aijlikakjbi=bilikbk
  4. 回代
    x n = b n a n n    x i = b i − ∑ j = i + 1 n a i j x j a i i x_n = \frac{b_n}{a_{nn}}\\ \;\\ x_i = \frac{b_i-\sum_{j=i+1}^na_{ij}x_j}{a_{ii}} xn=annbnxi=aiibij=i+1naijxj
  5. 输出 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn.

代码

def SolvingLinearEquations(AugmentedMatrix):
    col = AugmentedMatrix.shape[1] #增广矩阵列数
    #消元
    for i in range(col- 2):
        current_column  = AugmentedMatrix[i:,i] 
        max_index = np.argmax(current_column) + i #寻找最大元
        if(AugmentedMatrix[max_index,i] == 0):
            print("无唯一解")
            return
        AugmentedMatrix[[i,max_index],:] = AugmentedMatrix[[max_index,i],:] #交换
        l = AugmentedMatrix[i+1:,i] / AugmentedMatrix[i,i] #计算系数
        m =  np.tile(AugmentedMatrix[i,:],(l.shape[0],1)) * np.tile(l,(col,1)).T #计算消元时减去的矩阵
        AugmentedMatrix[i+1:,:] = AugmentedMatrix[i+1:,:] - m #消元
    if(AugmentedMatrix[col - 2,col - 2] == 0):
            print("无唯一解")
            return
   #代入
    x = np.zeros(col-1)
    for i in range(col-2,-1,-1):
        x[i] = (AugmentedMatrix[i,-1] - np.dot(AugmentedMatrix[i,:-1] , x.T)) / AugmentedMatrix[i,i]
    return x    
                

测试

以下面这道题做实验
在这里插入图片描述

#增广矩阵
A =  np.array([[0.0120,0.0100,0.1670,0.6781],
               [1.000,0.8334,5.910,12.10],
               [3200,1200,4.200,983.3]])
x = SolvingLinearEquations(A)

程序计算结果
[ 17.4605799 , -45.76154086, 5.54603862]

#include #include #define N 100 #define epsilon 1e-6 float a[N][N+1]; void menu( ) { printf("\t\t%c%c%c^_^Gauss列主元去法求线性方程组^_^%c%c%c\n\n",1,1,1,1,1,1); printf("强烈建议您先阅读以下几点后在运行:\n"); printf("1.这是用Gauus列主元去法求线性方程组的应用程序\n"); printf(" (Gauus全主元去法类似可做,读者有兴趣的话可自行而做)\n"); printf("2.请您先了Gauus列主元去法的主要思想\n"); } void main( ) { int i,j,k,n; float t,s=0; char choice; menu( ); loop: printf("\n请输入系数方阵的阶数:"); scanf("%d",&n); while(n>0) { printf("\n"); printf("请输入增广阵矩:\n"); for(i=0;i<n;i++) for(j=0;j<n+1;j++) scanf("%f",&a[i][j]);/*存储增广阵矩*/ for(k=0;k<n-1;k++) { for(i=k+1;i fabs(a[k][k]) ) for(j=k;j<n+1;j++) { t=a[k][j]; a[k][j]=a[i][j]; a[i][j]=t; } if( fabs(a[k][k]) < epsilon)/*最大数小于很小数时退出*/ { printf("\n错误,Gauss列主元去法无法忍受,在%d步退出!\n",k+1); printf("还要再计算其他的么(Y/N)?"); scanf("%c",&choice); if(choice=='Y' || choice=='y')/*判断用户输入*/ goto loop; else return; } for(i=k+1;i<n;i++) { a[i][k]=a[i][k] / a[k][k]; for(j=k+1;j=0;k--) { s=0; for(j=k+1;j<n;j++) s+=a[k][j]*a[j][n]; a[k][n]=( a[k][n]-s ) / a[k][k]; } printf("\n*****运行结果*****\n"); for(i=0;i<n;i++) printf(" x[%d]=%.4f\n",i+1,a[i][n]); printf(" 谢谢使用!\n"); printf("还要再计算其他的么(Y/N)?"); getchar( ); scanf("%c",&choice); if(choice=='Y' || choice=='y')/*判断用户输入*/ goto loop; else return; } }
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值