离散数学·代数结构【二元关系及其性质、代数系统】

练习放在文末

n元运算的定义

实例

算律

 

其中,这2个⚪和*只是代指某一个运算符(并不是真的有这2个运算符)

实例

特异元素

性质

实例

消去律定义

例题

由运算表判别算律的方法

 

 例题

代数系统的定义

记法一用得比较少

实例

分类

这个构成成分比较抽象,不是指载体,是指载体的性质。运算个数——如果是无穷集,那么就是一样的

子代数

这个例子之所以不是,是因为没有满足零元运算(单位元不同)

封闭是指运算完之后的结果仍在载体中

最大、最小、平凡子代数

最小子代数就是所有代数常数组成的集合,并且封闭

例子

首先,nz和Z的构成成分相同,是同类型的。接着,+满足的(+特殊的性质)单位元,拿到nz上运算,满足,即可知满足

n=0只有一个0,所以是真子代数

n=1就是Z本身

n>1既不是本身,也不是最小子代数

积代数

积代数的载体是两个因子代数的载体相乘

运算集这里比较抽象,难以直接解释。但是积代数的元素(各个有序对)中,前一项是V1的运算(用V1有序对的前一项和V2有序对的前一项运算),后一项是V2的运算(这里同理)。这样解释比较清晰

题目

题目用来辅助

15题

步骤:

1.做卡氏积

2.得到卡氏积后,用有序对和所有有序对(包括自己)做积代数的运算(本题中——<1,5>和<2,6>作积代数运算——<1【V1运算符】2,5【V2运算符】6>——<2,5>) 

性质

简而言之——因子代数满足,在积代数中对应就满足什么(不满足消去律,消去律这个一直比较特殊)

练习

1题

这题主要是看看运算表

4题(1)~(5)

第一个——减法不满足任何算律,并且减法是没有单位元的(可以看看单位元的定义,要满足交换的形式,即e a=a e,明显减法不存在单位元

第二个——因为未包含 0 ,所以,没有零元

7题

是否构成代数系统——看运算是否封闭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值