这学期学习了离散数学Ⅱ这门课程,离散数学Ⅱ包含了群、环、域、格、布尔代数五个代数系统
1.代数系统
- 代数系统:非空集合A,连同若干个在该集合上的封闭运算f1,f2,…,fn所组成的系统,记为<A,f1,f2,……,fn>
- 代数系统的组成:载体(非空集合A),定义在载体上的运算,代数常元
- 代数运算的性质:交换律,结合律,分配律,吸收律(x*(xoy)=x),等幂律(x*x=x)
- 代数常元:
幺元(单位元):左幺元:el * x=x 右幺元:x * er=x
零元:左零元:θl * x=θl 右零元:x * θ r=θ r
逆元:x*y=e -----> x是y的左逆元,y是x的右逆元
2.子代数
- 子代数:<A,*,Δ,K>是代数系统,是二元运算,Δ是一元运算,K是代数常元,若:①. A|⊆A ②. 和Δ在 A|封闭 ③. K∈ A| ,那么<A|,,Δ,K>是<A,,Δ,K>的子代数
- 平凡子代数: T是A中代数常元的集合,且*和Δ在T封闭,则<A, * ,Δ>和<T, * ,Δ>是<A, * ,Δ>的平凡子代数
- 非平凡子代数(真子代数):不是平凡子代数的子代数
3.同态
- 同态:A=<S,,Δ,K>和 A| =<S| ,| ,Δ| ,K| >是两个具有相同构成的代数系统,f是S到S|的一个映射,对任意a,b∈S,有f(a*b)=f(a) *| f(b),f(Δa)=Δ|f(a),==f(k)=K| ==(先函数再运算=先运算再函数),则称F是A到A|的同态映射,称A同态于A|,A~A|
- 同态象:&