[笔记]离散数学Ⅱ

这篇笔记概述了离散数学Ⅱ的主要内容,包括代数系统、子代数、同态、同余、半群、独异点、群、环、域、格、布尔代数及其相关概念。详细介绍了各种运算、性质以及特殊结构如循环独异点和循环群,同时也探讨了格的特殊形式,如分配格和布尔格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这学期学习了离散数学Ⅱ这门课程,离散数学Ⅱ包含了群、环、域、格、布尔代数五个代数系统

1.代数系统

  1. 代数系统:非空集合A,连同若干个在该集合上的封闭运算f1,f2,…,fn所组成的系统,记为<A,f1,f2,……,fn>
  2. 代数系统的组成:载体(非空集合A),定义在载体上的运算,代数常元
  3. 代数运算的性质:交换律,结合律,分配律,吸收律(x*(xoy)=x),等幂律(x*x=x)
  4. 代数常元:
    幺元(单位元):左幺元:el * x=x 右幺元:x * er=x
    零元:左零元:θl * x=θl 右零元:x * θ rr
    逆元:x*y=e -----> x是y的左逆元,y是x的右逆元

2.子代数

  1. 子代数:<A,*,Δ,K>是代数系统,是二元运算,Δ是一元运算,K是代数常元,若:①. A|⊆A ②. 和Δ在 A|封闭 ③. K∈ A| ,那么<A|,Δ,K>是<A,,Δ,K>的子代数
  2. 平凡子代数: T是A中代数常元的集合,且*和Δ在T封闭,则<A, * ,Δ>和<T, * ,Δ>是<A, * ,Δ>的平凡子代数
  3. 非平凡子代数(真子代数):不是平凡子代数的子代数

3.同态

  1. 同态:A=<S,,Δ,K>和 A| =<S|| ,Δ| ,K| >是两个具有相同构成的代数系统,f是S到S|的一个映射,对任意a,b∈S,有f(a*b)=f(a) *| f(b)f(Δa)=Δ|f(a),==f(k)=K| ==(先函数再运算=先运算再函数),则称F是A到A|的同态映射,称A同态于A|,A~A|
  2. 同态象:&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值