离散数学重点(第四部分)

四.图论

离散数学的知识只包括本人根据自身前提情况认为有必要一看的内容


1. 边点关联:设ek=(vi,vj)为无向图G的一条边。vi,vj为ek的端点。则ek与vi,vj关联。
若vi≠vj,则关联次数为1;若vi=vj,则关联次数为2.

2. 无向图关联矩阵:mij为顶点vi与边ej的关联次数。则(mij)为G的关联矩阵。

3. 有向图关联矩阵:(不能有环)
mij = :

  • 1:vi为ej的起点
  • 0:vi与ej不关联
  • -1:vi为vj的终点

则(mij)为D的关联矩阵,记作M(D)

4. 握手定理:所有度数之和为边数的2倍
推论:度数为奇数的顶点个数为偶数

5. 完全图
无向简单图任何顶点都与其他顶点相连,则为无向完全图:Kn
有向简单图中任何两个顶点既有<u,v>又有<v,u>,则为有向完全图

【简单图:无环无重边】

6. 生成子图:点和母图一样,边是母图的子集

7. 导出子图

  • 点的导出子图:取母图的一部分点为集合V1,以两端点均在V1中的边为边集。称为V1的导出子图。
  • 边的导出子图:取母图的一部分边为集合E1,以E1中关联的顶点为点集。称为E1的导出子图。

8.

  • 通路(回路)所有边各异,称其为简单通路(回路)
  • 通路(回路)所有顶点(回路的起点终点除外)各异,所有边也各异,称其为初级通路(回路)

9. 求图中长度为n的通路与回路:邻接矩阵的n次。

10. 割集
点割集:去掉最少的一个顶点集子集使图的连通分支数增加【一个顶点是割点】
边割集:去掉最少的一个边集子集使图的连通分支数增加【一条边是割边/桥】
G的连通分支数:p(G)

11. 几个特殊图和判定

二分图判断:n阶无向图是二部图当且仅当G中无奇圈

欧拉回路:通过图中所有边一次且仅一次的回路称为欧拉回路
欧拉图:具有欧拉回路的图
半欧拉图:具有欧拉通路的图
判定:无向图G是欧拉图当且仅当G是连通图且无奇度顶点

哈密顿回路:通过图中所有点一次且仅一次的回路称为哈密顿回路
哈密顿图:具有哈密顿回路的图
半哈密顿图:具有哈密顿通路无哈密顿回路的图
以下是一些充分/必要条件:
(1)若无向图是哈密顿图则(→):p(G-v1) ≤ |v1| ,v1是点集合的非空真子集。
(2)若n阶无向简单图G的任意不相邻顶点u,v都有:d(u)+d(v)≥n-1,则(→)G中有哈密顿通路(半哈密顿图)
(3)若n(≥3)阶无向简单图G的任意不相邻顶点u,v都有:d(u)+d(v)≥n,则(→)G中有哈密顿回路(哈密顿图)【哈密顿图判定】

平面图判断:无K2、K3,3的同胚子图
同胚:不停插入2度点、消去2度点得到的图

定理:
(1)所有面的次数之和等于边数的两倍
(2)欧拉公式:n-m+r=2(n为点数、m为边数、r为面数)

12. 基本回路/回路系统 AND 基本割集/割级系统
例子:

生成树的:e,f,g对应的基本回路分别为:
Ce = cde
Cf = abfc
Cg = abgd
**基本回路系统:**C = {Ce, Cf, Cg}

生成树的树枝:a,b,c,d对应的基本割集分别为:
Sa = afg
Sb = bfg
Sc = cfe
Sd = deg
基本割集系统: S = {Sa, Sb, Sc, Sd}

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值