Paper_reading 1 Heartbeat Classification Using Morphological and Dynamic Features of ECG Signals

基于ECG的形态学和动态学特征的心跳分类
摘要:
形态学:小波变换+ICA  动态学:RR间隔特征
对两条导联的ECG信号独立处理,融合两种判别信息。

引言:
描述心跳特征的有:hermite系数、高阶统计特征、小波特征、波形特征
用于分类的算法有:自组织映射SOM、线性判别LDs、决策树、SVM、人工神经网络(ANN)、动态贝叶斯网络、条件随机域(CRF)、
采用的评价方案:class-oriented、subject-oriented
class分类器,训练和测试集包含相同病人的心跳,个体变异性小,实际应用效果不佳,subject分类器完全将训练集的记录排除在测试集外

与其他论文的对比:
1、特征提取:11采用的小波+ICA 只提取了第4级近似系数,本文采用第3和4级细节系数和第4级的近似系数 对应ECG频带范围 0.5-40HZ;11使用10000次正常心拍训练ICA,本文只使用了16分类心拍的数百次。
7,13,14,16采用两个瞬时RR,前RR,后RR,作为心拍的间隔特征
8提出两个RR特征,局部RR,平均RR,此外还有两个瞬时RR,这些都是用来描述心拍与心拍之间的动态学特征。但平均RR对于在线监控不切实际。
2、SVM:融合两个导联的分类结果,对每个心拍做最终定论,对比单导联有明显提升

论文思想:心率失常心拍可以通过动态学和形态学的差异从正常心跳中区分出来,比如失常心拍 在波形上有扭曲的QRS波群 或是在正常的心脏周期缺失一些重要组成部分(P波)
3、本文除了检测R峰之外,还需检测t波和p波的起始点和偏移量,这些点对噪声很敏感,具体地,形态特征有级别4的近似系数和级别3,4的细节系数,和ICA分量的权重,动态特征上推出了四种改进的RR间期特征,每一次心跳都由结合的形态学与动态学特征表示。

数据集:
关于MIT数据集的基本介绍,A导联峰值更突出,B导联的ectopic心拍比正常心拍更清晰(记录106)
利用QRS波注释文件的人工标注截取心拍,额外的实验,在注释的QRS位置引入一定的人为抖动,,,
评估策略:在class中,所有48条记录都被使用过,并通过QRS波的注释位置截取的心拍,但class评价效果过于乐观,subject记录,根据AAMI标准,记录102.104.107.217被排除在外,其余44条记录按1:1划分训练测试集,原来的16分类划分为5大类:N,S,V,F,Q。并且44条记录被划分为44-fold,对每个fold,分类器用剩余的43折训练,这个过程遍历了所有44个折叠。

方法:
五大步骤:预处理,心拍截取,特征提取,分类,二导联融合
预处理去除伪影,根据注释做心拍截取,小波和ICA分别作用于每个心拍,然后用PCA对相应系数做降维,选择产生的主成分解释大部分的方差,这些主成分就作为描述心拍的特征。
此外,生出一组RR间隔特征。用SVM分类成16类
上述程序独立作用于A,B导联,最后融合(用相关度概率)做最终心拍的分类。

A、预处理
工作:基线漂移校正、带通滤波
首先用基于小波的方法对原始信号进行基线漂移校正[22]
5-12HZ的带通滤波,消除高频和低频伪影

B、心拍截取
使用手动注释,更专注于分类器的性能。
实际应用中,需要自动检测R峰来达到完全自动化,在MIT库中,心拍检测是个已经研究地很好的问题了,错误率<0.5%。自动化的R峰检测引起的误差会一定程度上破坏RR间隔特征。为了评估这种误差的影响,引入了高斯分布(零均值和一定方差)的人工抖动(结尾提到)
300个采样点(前100+后200),这种长度比与PR间期和QT间期的典型长度相称,使用固定长度优点在于,可以避免对其他波形(p,t)的基准点的检测。这类波形由于幅度较低,对噪声更敏感。局限性在于,如果心跳的过快,这样的心跳段可能包含邻近心跳的信息。

C、小波变换
生物电信号的变化体现在时间和频率上,但傅里叶变换只能提供心跳频率的分量,所以选择小波,小波在ECG信号上有多种用途,去噪,心拍检测,特征提取。本文采用小波做特征提取,db8小波,四级分解,选择D3,D4,A4 32+32+50=114个系数。做了小波系数与原始正常信号、APC信号的重塑对比。

D、独立成分分析
ICA最初是解决盲源分离问题,从一组观测信号恢复出独立的信号源(鸡尾酒宴会)x(t) = A ·s(t) x为原始信号,s为独立源信号 
ICA的目的就是估计出s和A,假定s1(t),s2(t)都是独立的非高斯分布数据。用一个快速定点算法用于评估潜在的ICS[31] 从每条记录中的16个类别,每个类别选取5个样本量(如果实际数目不足5个,则取所有)总共得626个心拍。得到14个ics系数作为每个心拍的特征,为了研究ics的数目对分类的影响并选取最优的ics数目
,对训练集进行10-fold交叉验证,ics数目从10~30,只使用ICA系数作为心跳特征输入SVM,14是最好的选择。

E、PCA
114个小波特征加上14个ICA特征,采用PCA方法降低特征间的关联性
 为了确定适合的PCA维度,进行10倍交叉验证。选择降维后的特征数为18,PCA是在形态特征和动态特征串联之前引入的,因为这两组特征集中在不同的特征上,一个表达心拍本身,一个是表心拍与心拍之间。另外,对形态特征进行降维,是为了保证形态和动态特征之间的平衡,特征之间数量的不平衡会影响SVM分类器,导致分类性能下降

F、RR间隔特征
RR称为动态特征,四个RR特性表示不同规模的心跳节奏,前RR,后RR,local RR,average RR.
前RR:给定R峰与前一个R峰之间距离
后RR:当前R峰与后一个R峰之间距离
局部RR:过去10s所有RR间期的平均值
平均RR:过去5分钟所有RR间期的平均值
关于局部RR和平均RR在某些论文中会有些使用上的不同之处(略)。

G、SVM
关于SVM的一些原理介绍
论文采用10折交叉验证取最佳正则化C,核宽度参数 σ,
采用RBF核函数

H、双导联融合
对两种导联信号分别进行特征提取和分类,使用两个分类器训练,最后融合两个独立的答案,决定心拍最终类别。
第一种,拒绝法,当两个分类器答案不同,至少有一种是错误的,可能是因为肌肉运动,惦记收缩造成的信号质量的损失。这类心跳不做判断,付出的代价就是一部分的心拍没有做任何的决策。
第二种,贝叶斯方法,通过对两个分类器的概率进行不相关评估,类别取最高的概率估计。

结果
1、class导向:a导联98.72%,b导联98.60%
拒绝法的准确率达到99.71%,代价是拒绝了2054次心拍
贝叶斯方法准确率99.32%,很明显双导联融合的准确率更高。推荐双导联。使用两个指标灵敏度Se,正预测率+p,根据真正阳性(TP)、假阴性(FN)和假阳性(FP)的数目计算的。
对于不同类型特征的贡献,单独使用小波和 ICA特征,得到的平均分类准确率分别为 95.32%和94.25%。结合小波变换、独立分量分析(ICA)和主成分分析(PCA),分类准确率达到 98.46%。通过增加RR 特征,最终的分类准确率提高到 99.32%。
但面向class导向的评估并不适用于实际。
2、subject导向:由于个体差异,效果比class导向更差。

特征提取鲁棒性测试:
本文用的是手动注释的R波,但实际应用,R波检测应该完全自动化,但自动的R波检测可能会引入误差的RR特征,因为实际的R峰和检测出的r峰位置可能发生偏移,所以实验引入个高斯分布的人为抖动到注释的QRS波位置,基于class的准确率与原来评价结果对比,证明了特征提取方法的鲁棒性。

[22] D. Zhang, “Wavelet approach for ECG baseline wander correction and noise reduction,” in Proc. IEEE Int. Eng. Med. Biol. Soc., 2005, pp. 1212– 1215. 

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值