有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。
第 ii 件物品的体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
一、如果装不下当前物品,那么前n个物品的最佳组合和前n-1个物品的最佳组合是一—
样的。
二、如果装得下当前物品。
假设1:装当前物品,在给当前物品预留了相应空间的情况下,前n-1个物品的最佳组
合加上当前物品的价值就是总价值。
设2:不装当前物品,那么前n个物品的最佳组合和前n-1个物品的最佳组合是一样
2a
选取假设1和假设2中较大的价值,为当前最佳组合的价值。
#include<bits/stdc++.h>
using namespace std;
int v[1001];//体积
int w[1001];//价值
int f[1001][1001];//f[i][j]:j体积下前i个物品最大价值
int main()
{
int n,m;
while(cin >> n >> m){
for(int i = 1;i <= n; i++)
cin >> v[i] >> w[i];
for(int i = 1;i <= n; i++)
for(int j = 1;j <= m; j++)
{
if(j < v[i])//当前背包装不下第i件物品
f[i][j] = f[i-1][j];
else//判断是否装第i件物品
f[i][j] = max(f[i-1][j], f[i-1][j-v[i]]+w[i]);
}
cout << f[n][m] << endl;
}
system("pause");
}
一维数组处理
#include<bits/stdc++.h>
using namespace std;
int f[1001];
int v[1001];
int w[1001];
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++)
cin >> v[i] >> w[i];
for(int i = 1; i <= n; i++)
{
for(int j = m;j >= v[i];j--)
f[j] = max(f[j], f[j - v[i]]+w[i]);
}
cout << f[m] <<endl;
system("pause");
}