石子合并(区间dp)

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为4+9+11=24;

如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 N 表示石子的堆数 N。

第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22
/*
 * @Description: To iterate is human, to recurse divine.
 * @Autor: Recursion
 * @Date: 2022-04-02 23:00:48
 * @LastEditTime: 2022-04-04 23:43:51
 */
#include <bits/stdc++.h>
#define LL long long 
using namespace std;
const int maxn = 1e8 + 10;
const int mod = 1e9 + 7;
const int INF = 1e9 + 10;
const int N = 1e4;
int n;
int a[N],dp[N][N];
int sum[N];//前缀和
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> n;
    for(int i = 1;i <= n;i ++){
        cin >> a[i];
    }
    for(int i = 1;i <= n;i ++)
        sum[i] = sum[i - 1] + a[i];
    // for(int i = 1;i <= n;i ++)
    //     cout << sum[i] << endl;
    for(int len = 2; len <= n;len ++)
        for(int i = 1; i + len - 1 <= n;i ++){
            int j = i + len - 1;
            dp[i][j] = maxn;
            for(int k = i;k < j;k ++)
                dp[i][j] = min(dp[i][j],dp[i][k] + dp[k + 1][j] + sum[j] - sum[i -1]);
        }
    cout << dp[1][n] << endl;
    // for(int i = 1; i<= n;i ++){
    //     for(int j = 1; j <= n;j ++)
    //         cout << dp[i][j] << " ";
    //     cout << endl;
    // }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值