设有 N 堆石子排成一排,其编号为 1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 4 堆石子分别为 1 3 5 2
, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2
, 又合并 1,2 堆,代价为 9,得到 9 2
,再合并得到 11,总代价为4+9+11=24;
如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7
,最后一次合并代价为11,总代价为 4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数 N 表示石子的堆数 N。
第二行 N 个数,表示每堆石子的质量(均不超过 1000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
/*
* @Description: To iterate is human, to recurse divine.
* @Autor: Recursion
* @Date: 2022-04-02 23:00:48
* @LastEditTime: 2022-04-04 23:43:51
*/
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn = 1e8 + 10;
const int mod = 1e9 + 7;
const int INF = 1e9 + 10;
const int N = 1e4;
int n;
int a[N],dp[N][N];
int sum[N];//前缀和
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n;
for(int i = 1;i <= n;i ++){
cin >> a[i];
}
for(int i = 1;i <= n;i ++)
sum[i] = sum[i - 1] + a[i];
// for(int i = 1;i <= n;i ++)
// cout << sum[i] << endl;
for(int len = 2; len <= n;len ++)
for(int i = 1; i + len - 1 <= n;i ++){
int j = i + len - 1;
dp[i][j] = maxn;
for(int k = i;k < j;k ++)
dp[i][j] = min(dp[i][j],dp[i][k] + dp[k + 1][j] + sum[j] - sum[i -1]);
}
cout << dp[1][n] << endl;
// for(int i = 1; i<= n;i ++){
// for(int j = 1; j <= n;j ++)
// cout << dp[i][j] << " ";
// cout << endl;
// }
return 0;
}