排序算法分类及其时间复杂度简要介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。

排序分类

  • 内部排序:指将需要处理的所有数据都加载到 内部存储器 中进行排序。
  • 外部排序法:数据量过大,无法全部加载到内存中,需要借助 外部存储 进行排序。

排序算法分类

在这里插入图片描述

时间复杂度

1、度量一个程序(算法)执行时间的两种方法:事后统计的方法、事前估算的方法。

事后统计的方法 :这种方法可行,但是有两个问题:

  • 一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
  • 二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,

这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

事前估算的方法 :通过分析某个算法的时间复杂度来判断哪个算法更优。

2、时间频度 :一个算法 花费的时间 与算法中 语句的执行次数正比例 ,哪个算法中语句执行次数多,它花费时间就多。

3、语句频度 :一个算法中的语句执行次数称为语句频度。记为 T(n)

4、时间复杂度: 忽略常数项

  • 2n + 202n 随着 n 变大,执行曲线无限接近,20可以忽略。
  • 3n + 103n 随着n 变大,执行曲线无限接近,10可以忽略。

5、时间复杂度: 忽略低次项

  • 2n^2 + 3n + 10 和 2n^2 随着n 变大,执行曲线无限接近,可以忽略 3n + 10
  • n^2 + 5n + 20 和 n^2 随着n 变大,执行曲线无限接近,可以忽略 5n + 20

5、时间复杂度: 忽略系数

  • 随着n值变大,5n^2 + 7n 3n^2 + 2n ,执行曲线重合,说明,这种情况下,5和3可以忽略。
  • n^3 + 5n 6n^3 + 4n ,执行曲线分离,说明多少次方式关键。

6、时间复杂度

  • 一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n) 表示,若有某个辅助函数 f(n) ,使得当 n 趋近于无穷大时, T(n) / f(n) 的极限值为不等于零的常数,则称 f(n)T(n) 的同数量级函数。记作 T(n)=O(f(n)) ,称 O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
  • T(n) 不同,但时间复杂度可能相同。 如:T(n) = n² + 7n + 6T(n) = 3n² + 2n + 2 它们的 T(n) 不同,但时间复杂度相同,都为 O(n²)

计算时间复杂度

  • 用常数1代替运行时间中的所有加法常数 T(n) = n² + 7n + 6 => T(n) = n² + 7n + 1
  • 修改后的运行次数函数中,只保留最高阶项 T(n) = n² + 7n + 1 => T(n) = n²
  • 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

常见的时间复杂度

  • 常数阶 O(1) :无论代码执行了多少行,只要没有循环等复杂结构,那这个代码的时间复杂度就都是 O(1)
  • 对数阶 O(log2n) :在 while 循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环 x 次之后,i 就大于2了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n ,那么 x = log2n 也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n)O(log2n) 的这个 2 时间上是根据代码变化的, i = i * 3 ,则是 O(log3n)
  • 线性阶 O(n) :在 for 循环里面的代码会执行 n 遍,因此它消耗的时间是随着 n 的变化而变化的,因此这类代码都可以用 O(n) 来表示它的时间复杂度。
  • 线性对数阶 O(nlog2n) :线性对数阶 O(nlogN) 其实非常容易理解,将时间复杂度为 O(logn) 的代码循环 N 遍的话,那么它的时间复杂度就是 n * O(logN) ,也就是 O(nlogN)
  • 平方阶 O(n^2) :平方阶 O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) ,这段代码其实就是嵌套了2层 n 循环,它的时间复杂度就是 O(n*n) ,即 O(n²) 如果将其中一层循环的 n 改成 m ,那它的时间复杂度就变成了 O(m*n)
  • 立方阶 O(n^3)O(n³) 相当于三层n循环,k次方阶 O(n^k) 也同理。
  • 指数阶 O(2^n) :这个基本不考虑。
    算法的时间复杂度
    算法时间复杂度 由小到大 依次为:
  • Ο(1)Ο(log2n)Ο(n)Ο(nlog2n)Ο(n2)Ο(n3)Ο(nk)Ο(2n)

随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

平均时间复杂度和最坏时间复杂度

平均时间复杂度是指所有可能的输入实例均以 等概率 出现的情况下,该算法的运行时间。最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。

这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
在这里插入图片描述

空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模 n 的函数。

空间复杂度(Space Complexity)是对一个算法在运行过程中 临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n 有关,它随着 n 的增大而增大,当 n 较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况

在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的 程序执行 的速度。一些缓存产品(redis,memcache)和算法(基数排序)本质就是用 空间换时间

各种算法时间复杂度对比

各种算法时间复杂度对比

相关术语解释

  • 稳定:如果 a 原本在 b 前面,而 a = b ,排序之后 a 仍然在 b 的前面。
  • 不稳定:如果 a 原本在 b 的前面,而 a = b,排序之后 a 可能会出现在 b 的后面。
  • 内排序:所有排序操作都在内存中完成。
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。
  • 时间复杂度: 一个算法执行所耗费的时间。
  • 空间复杂度:运行完一个程序所需内存的大小。
  • n :数据规模。
  • k 的个数。
  • In-place :不占用额外内存。
  • Out-place :占用额外内存。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值