【BZOJ 1011】 [HNOI2008]遥远的行星

1011: [HNOI2008]遥远的行星

Time Limit: 10 Sec   Memory Limit: 162 MBSec   Special Judge
Submit: 2131   Solved: 754
[ Submit][ Status]

Description

直线上N颗行星,X=i处有行星i,行星J受到行星I的作用力,当且仅当i<=AJ.此时J受到作用力的大小为 Fi->j=Mi*Mj/(j-i) 其中A为很小的常量,故直观上说每颗行星都只受到距离遥远的行星的作用。请计算每颗行星的受力,只要结果的相对误差不超过5%即可.

Input

第一行两个整数N和A. 1<=N<=10^5.0.01< a < =0.35 
接下来N行输入N个行星的质量Mi,保证0<=Mi<=10^7

Output

N行,依次输出各行星的受力情况

Sample Input

5 0.3
3
5
6
2
4

Sample Output

0.000000
0.000000
0.000000
1.968750
2.976000

HINT

精确结果应该为0 0 0 2 3,但样例输出的结果误差不超过5%,也算对


用近似估计来做。


很神的一道题,读题的时候就觉得 结果误差不超过5%,也算对这句话非常奇怪。


然后看了题解才明白这句话是这道题的关键啊!


因为当行星的相距很远时,作用力会非常小,完全可以估算,即把前1-now的行星到当前行星的距离都算做到now/2的距离,O(1)求解。


#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstdio>
#define eps 1e-8
using namespace std;
int n;
double a,ans[100005],m[100005],pre[100005];
int main()
{
	scanf("%d %lf",&n,&a);
	for (int i=1;i<=n;i++)
		scanf("%lf",&m[i]);
        int now=0;
	ans[1]=0.0;
	for (int i=2;i<=min(2000,n);i++)
	{
		if ((double)i*a+eps>=(double)(now+1)) now++;
		for (int j=1;j<=now;j++)
			ans[i]=ans[i]+m[i]*m[j]/(double)(i-j);
	}
	pre[0]=0.0;
	for (int i=1;i<=n;i++)
		pre[i]=pre[i-1]+m[i];
	for (int i=2001;i<=n;i++)
	{
		if ((double)i*a+eps>=(double)(now+1)) now++;
		ans[i]=pre[now]*m[i]/(double)(i-(int)now/2);
	}
	for (int i=1;i<=n;i++)
		printf("%.6lf\n",ans[i]);
	return 0;
}



感悟:

1.近似估计这种做法感觉非常神~


2.一开始WA了,加上eps之后就过了。


第一次遇到这种问题,以后做小数的题要加上浮点误差,尤其是数据精度非常大的时候。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值