【Python】计算psnr和ssim值

本文介绍如何在Python中使用numpy计算图像的PSNR和SSIM值。PSNR是评估图像失真的指标,SSIM则衡量图像的结构相似度。文章提供了针对灰度图和彩色图像的计算方法,并附带相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于python版的PSNR和ssim值计算

总所周知,图像质量评价的常用指标有PSNR和SSIM等,本博文是基于python版的图像numpy的float64格式和uint8格式计算两种指标值(附代码),代码经多方测试和对比,是可用的噢~如有问题请在下面评论留言!

psnr峰值信噪比

psnr是用来评价两幅图像相比质量的好坏,即失真情况。这两幅图像分别为原图像和经图像重建或者压缩后等图像处理方法的图像。PSNR越高,图像失真越小,具体细节就不展开说了。首先简单介绍一下psnr的公式计算。对于大小为m*n的两幅图像I和K(一幅是原图,一幅一般是图像重建后的图像),其均方差MSE定义为:
MSE
而PSNR的计算公式则为:
PSNR
其中,MAX为最大像素,即255。这个计算公式主要是针对的是灰度图,也就是单通道的。那么多通道的彩色图像应该怎么计算呢?这里给出两种计算方式:

  1. 分别计算RGB三个通道的PSNR,然后取平均值
  2. 计算RGB三通道的MSE,然后再除以3

这里给出三通道图像计算PSNR值的方法二,附上代码:

def psnr(target, ref):
	#将图像格式转为float64
    target_data = np.array(target, dtype=np.float64)
    ref_data = np.array(ref,dtype=np.float64)
    # 直接相减,求差值
    diff = ref_data - target_data
### 气象降尺度中的PSNRSSIM计算 在气象降尺度领域,峰信噪比(Peak Signal-to-Noise Ratio, PSNR结构相似性指数(Structural Similarity Index Measure, SSIM)是常用的图像质量评价指标。 #### 峰信噪比 (PSNR) 对于两个灰度图像 \( I \) \( K \),其中 \( M \times N \) 是图像的大小,则 PSNR 的定义如下: \[ MSE = \frac{1}{MN} \sum_{i=0}^{M-1}\sum_{j=0}^{N-1}[I(i,j)-K(i,j)]^2 \] \[ PSNR = 10\log_{10}\left(\frac{{MAX_I}^2}{MSE}\right) \] 这里 \( MAX_I \) 表示像素的最大可能,在8位灰度图像中通常为255[^1]。 ```python import numpy as np def psnr(original_image, compressed_image): mse = np.mean((original_image - compressed_image)**2) max_pixel_value = 255.0 psnr_value = 20 * np.log10(max_pixel_value / np.sqrt(mse)) return psnr_value ``` #### 结构相似性指数测量 (SSIM) SSIM 考虑了亮度、对比度以及结构三方面的变化。其公式表示为: \[ l(x,y)=\frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1}, c(x,y)=\frac{2\sigma_x\sigma_y+C_2}{\sigma_x^2+\sigma_y^2+C_2}, s(x,y)=\frac{\sigma_{xy}+C_3}{\sigma_x\sigma_y+C_3} \] 最终 SSIM 可以写成: \[ SSIM(x,y)=(l(x,y))^a(c(x,y))^b(s(x,y))^c \] 常数项 \( C_i=(k_iL)^2,i=1,2,3 \), L 代表动态范围,\( k_1,k_2\) 一般取较小数如 0.01 0.03[^2]。 ```python from skimage.metrics import structural_similarity as ssim import cv2 def calculate_ssim(imageA, imageB): grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY) grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY) score, _ = ssim(grayA, grayB, full=True) return score ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值