【论文阅读】LIME:Low-light Image Enhancement via Illumination Map Estimation(笔记最全篇)

本文介绍了LIME算法,一种低光照图像增强方法,基于Retinex理论,通过估计光照图实现图像增强。LIME通过初始化光照图,结合增广拉格朗日乘数法(ALM)和权重策略进行优化,有效提升低光照图像的能见度。实验证明,LIME在质量和性能上优于其他方法。
摘要由CSDN通过智能技术生成

今天要整理的一篇论文是使用传统的方法解决低照度的问题,Guo等人于2016年发表在IEEE上,论文《LIME:Low-light Image Enhancement via Illumination Map Estimation》,DOI:10.1109/TIP.2016.2639450

Abstract

在低照度环境下拍摄的图像通常能见度都很低,这些图像除了在视觉效果上降低了美感以外,还让计算机视觉的显示效果降质了。为了解决这个问题,本文提出了一种简单有效的低照度图像增强算法(Low-light Image Enhancement,LIME)。具体来说,输入一张低照度图像,选取每个像素通道中的最大值初始化该图像光照图,然后通过强加入一种结构先验来细化这个初始光照图,最后根据Retinex理论合成增强图。实验表明,该算法较之前的方法在质量和性能上都取得不错的效果。

Introduction

能见度高的图像能反映出场景中清晰的细节,这对于一些采用视觉技术的工作有很大的影响,如物体检测和追踪等。但是,在低照度的环境下捕获的图像通常是低能见度,虽然目前有很多算法能提升图像亮度,但是过度提亮会有损图像的效果。直接放大低照度图像可能是调节暗区可见性最直观和最简单的方法,但此操作也会带来另一个问题,比如相对较亮的区域可能已经饱和,因此丢失了相应的细节。

直方图均衡化(HE) 策略是一种将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法,可以避免上面的问题。它的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减(将像素灰度级范围规定在0-1),从而达到清晰图像的目的。直方图均衡化的核心是变换函数,而常用的变换函数有线性变换、分段线性变换、伽马校正,对数变换、幂变换等。在文中主要指出伽马校正的缺点:仅对每个像素进行操作,忽略了像素之间的相邻关系。

Retinex理论的理论依据依赖一个核心假设:(彩色)图像可以被分解成入射分量(光照)和反射分量两个主要成分,表达式如下:
I = T ⋅ R (1) \begin{aligned}I=T\cdot R \tag1\end{aligned} I=TR(1)
其中 I I I是原始低照度图,T是入射分量即光照,R是反射分量。最早基于Retinex理论的研究有SSR、MSR:它们都是把反射分量作为最后的增强结果,因此,只需要求解出入射分量即可。但是这样的处理方式,得到的结果通常是不自然的,且容易过度增强。往后的研究就偏向于优化入射分量,使其更自然,有通过融合多张图像来调整光照图,也有通过划分子块优化光照图等。最后来,研究的方向就偏向于加入权重模型,同时优化光照图和反射分量。

到这里,值得一提的方法是:Dong发现了反转低照度图像跟有雾图像的特征相似,因此提出了反转图像(作为伪雾图)应用去雾算法,同样能得到增强亮度的效果,这就将低照度增强领域扩展至图像去雾领域中去了,去雾算法可用在低照度增强中去。(对这个算法感兴趣的同学,可以去下载文章看看,这里提供论文DOI:10.1145/1836845.1836920)

伪雾图与有雾图像
(图)伪雾图与有雾图像

Contribution

本文提出的算法也是基于Retinex理论的,算法主要倾向于估计低照度图像的光照图来实现增强。这里值得注意的是,本文的算法跟以往的基于Retinex增强方法(直接将图像分解成L和R)不同,我们的算法是仅仅估计一种一个变量(光照),这大大地缩小解空间和减少计算量。本文的主要贡献是:

  1. 提出了两种加速优化光照图的算法:增广拉格朗日乘数法(ALM)和权重策略。
  2. 进行了大量的对比实验。

个人观点: 该文章最大的贡献其实是提出的第一种加速优化方法,他主要将优化光照的问题嵌入到最优化问题中,考虑图像的保真和结构性,自定义了一个优化的目标函数和相应的约束条件,然后采用传统的拉格朗日乘数法来解决这个优化问题。

Method

根据Retinex理论可知,我们理想的图像是R(入射分量)可以通过估计出光照图T和原始的低照度 I I I得到:
R = I T \begin{aligned}R=\frac IT \end{aligned} R=TI
为了简化计算,通常认为三通道(彩色)图像都是共享同一个光照图。首先初始化光照图 T T T
T c ( x ) = max ⁡ c ∈ { R , G , B } I c ( x ) (2) \begin{aligned}T^c(x)=\max_{c\in\{R,G,B\}}I^c(x) \tag2\end{aligned} Tc(x)=c{ R,G,B}maxIc(x)(2)
要保证这个的光照图不会使得增强的图像过于饱和,我们加入了一个非常小的参数 ϵ \epsilon ϵ来限制:
R ( x ) = I ( x ) T ( x ) + ϵ (3) \begin{aligned}R(x)=\frac {I(x)}{T(x)+\epsilon} \tag3\end{aligned} R(x)=T(x)+ϵI(x)(3)
ϵ \epsilon ϵ是一个非常小的常量,主要是为了避免出现除零和R过度饱和的情况。文章明确地指出这项工作的目标是:非均匀地增强弱光图像的照明,而不是消除光源引起的色移。

在文中,作者还特意与Dong提出的反转图像去雾增强算法作对比。我觉得这里的工作整理得挺好的,这里帮助我更好地理解了基于大气物理散射模型的去雾算法和基于Retinex理论增强算法之间能融合及相似的地方。所以,我在整理这篇文章的笔记的时候,还是决定把这部分写上。

Dong使用反转低照度图像 ( 1 − I ) (1-I) (1I)作为伪雾图,使用大气散射模型(4)来实现增强:
1 − I = ( 1 − R ) ⋅ T + α ( 1 − T ) (4) \begin{aligned}1-I=(1-R)\cdot T+\alpha(1-T) \tag4\end{aligned} 1I=(1R)T+α(1T)(4)
在大气物理模型(4)理论中,T代表透射率,需要估计的, α \alpha α代表大气光强,是一个确定的常量。而(1-I)代表伪雾图,(1-R)代表去雾后的图像,即增强的图像。

式子(4)和(1)进行对比,其实有一定的相似性,它们之间存在一种关系。这需要引入著名的何凯明博士提出的暗通道先验理论(Dark Channel Prior,DCP),即 I d a r k = min ⁡ c I c I^{dark}=\min_cI^c Idark=mincIc,清晰无雾图的暗通道为0,使用暗通道先验理论来估计透射率,有:

T ′ ( x ) ← 1 − min ⁡ c 1 − I c ( x ) α = 1 − 1 α + max ⁡ c I c ( x ) α (5) \begin{aligned} T'(x) \gets 1-\min_c\frac{1-I^c(x)}{\alpha}=1-\frac1\alpha+\max_c\frac{I^c(x)}{\alpha} \tag5\end{aligned} T(x)1cminα1Ic(x)=1α1+cmaxαIc(x)(5)
把(5)代入到(4)中,得到:
R ( x ) = I ( x ) − 1 + α ( 1 − 1 α + max ⁡ c I c ( x ) α + ϵ ) + ( 1 − α ) (6) \begin{aligned} R(x)=\frac{I(x)-1+\alpha}{(1-\frac1\alpha+\max_c\frac{I^c(x)}{\alpha}+\epsilon)}+(1-\alpha) \tag6\end{aligned} R(x)=(1α1+maxcαIc(x)+ϵ)I(x)1+α+(1α)(6)
α = 1 \alpha=1 α=1时,我们可以看到,(3)和(6)的结果是一样的;但是当 α \alpha α远离1,模型(3)和(6)的等价关系就不存在了。
3和6模型的结果
这个图展示了(3)和(6)两个模型的结果,虽然将大气光强设置成0.95,两个模型的效果仍然是非常明显的。本文主要是使用(3)的方式来获取增强图。经(2)获得初始化的光照图,然后使用两种不同的方法优化光照图,下面开始介绍文中的两种加速算法。

Speed-up Method(1):ALM

ALM加速法,是将优化光照的问题归纳为最优化问题中,考虑图像的保真度和结构平滑度,自定义了一个优化的目标函数,使用F范数和L1正则分别衡量图像的保真度和结构平滑度:
min ⁡ T ∣ ∣ T ′ − T ∣ ∣ F 2 + k ∣ ∣ W ⋅ ▽ T ∣ ∣ 1 (7) \begin{aligned} \min_T||T'-T||^2_F+k||W\cdot \triangledown T||_1 \tag7\end{aligned} TminTTF2+kWT1(7)

这里的k是平衡F范数和L1正则的系数。(7)式的前项为F范数,考虑的是细化后的光照图L‘与初始化的光照图L之间的保真度,后项为L1正则,考虑的是平滑度,W为权重矩阵, ▽ T \triangledown T T代表一阶导数滤波器,包括水平和垂直方向的。

传统上,可以通过交替方向乘子算法(ADMM)就能有效地解决问题(8)。 但从(8)中的目标可以看出,两个约束项都涉及T。这里引入了一个辅助变量G来代替 ▽ T \triangledown T T,以使问题可分离并因此易于解决。把 G = ▽ T G=\triangledown T G=T作为一项等式约束条件,最后我们的优化问题就等价于:
min ⁡ T , G ∣ ∣ T ′ − T ∣ ∣ F 2 + k ∣ ∣ W ⋅ G ∣ ∣ 1 s . t .    ▽ T = G (8) \begin{aligned} \min_{T,G}||T'-T||^2_F+k||W\cdot G||_1\\ s.t.\;\triangledown T=G \tag8\end{aligned} T,Gmin

评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值