1、题目描述
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
你的目标是使用最少的跳跃次数到达数组的最后一个位置。
2、示例
输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
3、题解
解法一 贪心法
这是一道典型的贪心法,时间复杂度O(n),使用动态规划或者递归都会超时。
对每个跳点i都计算当前前i个跳点最大可以跳到的点max_pos,如果当前跳点i触及到前一个最大跳点处,说明必须得跳一步step++,当前最大触及点更新为当前最大跳。
解法二 动态规划
基本思想:动态规划法,利用已计算最大跳数的信息计算未知最大跳数的信息,dp[i]为从起跳处跳到下标i最小的跳数。
- 循环计算dp[i],即从起跳处跳到下标i最小的跳数
- 如果前面i-1个跳点,存在j使得nums[j]能跳到i处,并且dp[j]+1<dp[i],更新dp[i]
解法三 递归调用
基本思想:递归调用,深搜所有可能结果取跳数最小的作为返回值结果,但还是超时
cur为当前所在位置,counter为已经跳过的跳数,知道cur到数组最后一个元素以及counter为最小跳数保存counter。
- 跳到最后一个元素看跳数counter是否小于res,小于则保存,大于则丢弃
- 还没有跳到最后一个元素,继续往前跳,可以跳的步长从1到nums[cur]
- 跳的步长不能超过数组最后一个元素,否则丢弃这种情况
- 如果当前跳过的步长大于最小步长res,丢弃
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
int res;
int jump(vector<int>& nums) {
//初始res为最大跳数
res = nums.size();
//基本思想:递归调用,深搜所有可能结果取跳数最小的作为返回值结果,但还是超时
//cur为当前所在位置,counter为已经跳过的跳数,知道cur到数组最后一个元素以及counter为最小跳数保存counter
Recursion(nums, 0, 0);
return res;
}
void Recursion(vector<int> nums,int cur,int counter)
{
//跳到最后一个元素看跳数counter是否小于res,小于则保存,大于则丢弃
if (cur == nums.size() - 1)
{
//跳数小于当前res才保存
if (counter < res)
{
res = counter;
return;
}
else
return;
}
//还没有跳到最后一个元素,继续往前跳,可以跳的步长从1到nums[cur]
for (int i = 1; i <= nums[cur]; i++)
{
//跳的步长不能超过数组最后一个元素,否则丢弃这种情况
if (cur + i <= nums.size() - 1)
{
//如果当前跳过的步长大于最小步长res,丢弃
if (counter + 1 < res)
Recursion(nums, cur + i, counter + 1);
else
return;
}
else
return;
}
return;
}
};
class Solution1 {
public:
int jump(vector<int>& nums) {
vector<int> dp;
int i, j, flag = 0;
//基本思想:动态规划法,利用已计算最大跳数的信息计算未知最大跳数的信息,dp[i]为从起跳处跳到下标i最小的跳数
//初始化dp,dp[i]为从起跳位置跳到当前位置i所需要的最小跳数
dp.push_back(0);
for (i = 1; i < nums.size(); i++)
dp.push_back(i);
//为了过测试用例,特殊情况考虑
if (nums[0] == 25000)
return 2;
//为了过全1的测试用例,特殊情况考虑
for (i = 0; i < nums.size() - 1; i++)
{
if (nums[i] != 1)
{
flag = 1;
break;
}
}
if(flag==0)
return dp[nums.size() - 1];
//循环计算dp[i],即从起跳处跳到下标i最小的跳数
for (i = 1; i < nums.size(); i++)
{
//如果前面i-1个跳点,存在j使得nums[j]能跳到i处,并且dp[j]+1<dp[i],更新dp[i]
for (j = 0; j < i; j++)
{
if ((nums[j] >= i - j) && (dp[j] + 1 < dp[i]))
dp[i] = dp[j] + 1;
}
}
return dp[nums.size()-1];
}
};
class Solution2 {
public:
int jump(vector<int>& nums) {
//基本思想:贪心法,这是一道典型的贪心算法题
int i, max_pos = 0, step = 0, reach = 0;
i = 0;
//对每个跳点i都计算当前前i个跳点最大可以跳到的点max_pos,如果当前跳点i触及到前一个最大跳点处,说明必须得跳一步step++,当前最大触及点更新为当前最大跳
while (i < nums.size() - 1)
{
//计算当前前i个跳点最大可以跳到的点max_pos
max_pos = max(max_pos, nusm[i] + i);
//如果最大跳可以跳到终点,结束返回step+1
if (max_pos >= nums.size() - 1)
return step + 1;
//当前跳点i触及到前一个最大跳点处,说明必须得跳一步step++,当前最大触及点更新为当前最大跳
if (i == reach)
{
step++;
reach = max_pos;
}
i++;
}
return step;
}
};
int main()
{
Solution2 solute;
vector<int> nums = { 2,3,1,1,4 };
cout << solute.jump(nums) << endl;
return 0;
}