1、题目描述
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
2、示例
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
3、题解
贪心算法,按照起点排序:选择结尾最短的,后面才可能连接更多的区间(如果两个区间有重叠,应该保留结尾小的) 把问题转化为最多能保留多少个区间,使他们互不重复,则按照终点排序,每个区间的结尾很重要,结尾越小,则后面越有可能容纳更多的区间。
class Solution {
public:
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if(intervals.size()==0) return 0;
sort(intervals.begin(), intervals.end(),[](auto &u,auto &v){return u[1] < v[1];});
int right=intervals[0][1],res=1;
for(int i=1;i<intervals.size();i++)
{
if(intervals[i][0]>=right)
{
res++;
right=intervals[i][1];
}
}
return intervals.size()-res;
}
};