机器学习 | 数学基础

机器学习的数学基础

作者:RichardsZ             公众号:智能驾驶软件宝典

本文简单整理了机器学习所涵盖的数学知识点,以结论的形式进行呈现,可作为便捷速查表,后续会继续进行完善!


前言

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习所需要的基本数学内容。


转载请注明出处,谢谢!

一、数列

在这里插入图片描述

一、矩阵

1. 矩阵的转置的转置仍为该矩阵,
     ( A T ) T = A (A^T)^T = A (AT)T=A
2. 矩阵相加的转置等于矩阵分别转置之后再相加。
     ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
3. 标量乘矩阵的转置等于矩阵先转置后乘标量。
     ( λ A ) T = λ A T (\lambda A)^ T = \lambda A^T (λA)T=λAT
4. 两个矩阵相乘的转置等于第二个矩阵的转置左乘第一个矩阵的转置。
     ( A B ) T = B T ∗ A T (AB)^T=B^T*A^T (AB)T=BTAT
5. 两个矩阵能够相乘的前提是,第一个矩阵的列数 = 第二个矩阵的行数,例如A为3x2的矩阵,B为2x4的矩阵,那么AxB为3x4的矩阵。
6. 单位矩阵,对角线上的元素为1,其它元素为0的矩阵。
7. 矩阵的逆,若AB=BA=E(E是单位矩阵),则称B是A的逆矩阵,而A则被称为可逆矩阵。
8. 如果一个行列式的两行(或两列)完全相同,那么这个行列式的值等于零 。
9.行列式计算常用方法:

计算方法
化三角形法在这里插入图片描述
提公因式法可根据矩阵的一行/一列提取元素,计算剩余行列式,如图下所示 在这里插入图片描述
9.矩阵的特征值和特征向量
特征值 λ \lambda λ计算行列式| λ E − A \lambda E-A λEA|,得到特征值 λ \lambda λ在这里插入图片描述
特征向量将求得的特征值 λ \lambda λ代入方程组 ( λ E − A ) x = 0 (\lambda E-A)x = 0 (λEA)x=0,求得x向量在这里插入图片描述

二、向量

1. 具有大小和方向的量。
2. 在表示向量的时候,各维度通常纵向书写 [ 1 4 ] \begin{bmatrix} 1\\ 4\end{bmatrix} [14],表示向量具备两个维度x和y,在x方向前进了1个单位,y方向上前进了4个单位。若用坐标表示,可体现为两个坐标点,如(0,0)->(1,4),或(1,4)->(2,8)。
3. 向量的模 = 向量每个维度的平方开根号。如 x ⃗ \vec x x = [ 1 4 ] \begin{bmatrix} 1\\ 4\end{bmatrix} [14],则 ∥ x ⃗ ∥ = 1 2 + 4 2 \|\vec x\| = \sqrt {1^2+4^2} x =12+42
4. 零向量,模为0,方向任意。
5. 单位向量,模为1的向量,方向任意。
6. 向量标准化,向量的坐标分量除以向量的模长。
7. 向量的内积,为向量的模长的乘积再乘两个向量夹角的余弦值。若给出了坐标,向量内积等于对应分量乘积之和。 a ⃗ ⋅ b ⃗ = ∥ a ⃗ ∥ × ∥ b ⃗ ∥ × c o s θ \vec a \cdot \vec b=\|\vec a\|\times \|\vec b\|\times cos\theta a b =a ×b ×cosθ
8. 向量的叉乘
在这里插入图片描述

  1. 由向量的内积可推导出,柯西不等式, ∥ a ⃗ ⋅ b ⃗ ∥ < = ∥ a ⃗ ∥ × ∥ b ⃗ ∥ \|\vec a \cdot \vec b\|<=\|\vec a\|\times \|\vec b\| a b <=a ×b
  2. ∥ x ⃗ + y ⃗ ∥ < = ∥ x ⃗ ∥ + ∥ y ⃗ ∥ \|\vec x+ \vec y\| <= \|\vec x\|+\|\vec y\| x +y <=x +y
    10.向量的投影, 设两个非零向量 a ⃗ \vec a a b ⃗ \vec b b 的夹角为θ,则将 ∥ b ⃗ ∥ ⋅ c o s θ \|\vec b\|·cosθ b cosθ叫做向量b在向量a方向上的投影或称标投影

三、L-P Norm(范数)

向量的范数
L-0 Norm(0-范数)向量中非0元素的数量
L-1 Norm(1-范数)也称曼哈顿距离,即两点在南北方向上的距离加东西方向上的距离,即 ∣ x ∣ 1 = Σ i = 1 n ∣ x ∣ |x|_1 = \Sigma_{i=1}^n|x| x1=Σi=1nx, 向量中的每个维度取绝对值进行加和
L-2 Norm(2-范数)也称欧式距离, ∣ x ∣ 2 = Σ i = 1 n x i 2 |x|_2 = \sqrt{\Sigma_{i=1}^nx^2_i} x2=Σi=1nxi2 ,向量中的每个维度取绝对值进行加和
L-Infinity Norm(无穷范数)向量中元素的最大值

四、微积分

1. 泰勒公式
    若函数 f ( x ) f(x) f(x) 在包含 x 0 x_0 x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,下式成立:
     f ( x ) = f ( x 0 ) 0 ! + f ′ ( x 0 ) 1 ! ∗ ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ∗ ( x − x 0 ) 2 + … + f ′ n ( x 0 ) n ! ∗ ( x − x 0 ) n + R n ( x ) f(x) =\frac {f(x_0)}{0!} +\frac {f'(x_0)} {1!} * (x-x_0) +\frac { f''(x_0)} { 2!} * (x-x_0)^2 + … +\frac { {f'^n}(x_0) }{ n!} * (x-x_0)^n + Rn(x) f(x)=0!f(x0)+1!f(x0)(xx0)+2!f′′(x0)(xx0)2++n!fn(x0)(xx0)n+Rn(x)
    其中, R n ( x ) Rn(x) Rn(x)为泰勒公式的余项, P n ( x ) Pn(x) Pn(x),即除余项的部分为泰勒多项式。

2. 麦克劳林公式
    当 x 0 = 0 x_0=0 x0=0时,此时的泰勒多项式又称作麦克劳林公式。 f ( x ) = f ( 0 ) 0 ! + f ′ ( 0 ) 1 ! ∗ ( x ) + f ′ ′ ( 0 ) 2 ! ∗ ( x ) 2 + … + f ′ n ( 0 ) n ! ∗ ( x ) n + R n ( x ) f(x) =\frac {f(0)}{0!} +\frac {f'(0)} {1!} * (x) +\frac { f''(0)} { 2!} * (x)^2 + … +\frac { f'^n(0) }{ n!} * (x)^n + Rn(x) f(x)=0!f(0)+1!f(0)(x)+2!f′′(0)(x)2++n!fn(0)(x)n+Rn(x)
    例如 f ( x ) = l n ( 1 + x ) f(x)=ln(1+x) f(x)=ln(1+x) f ′ ( x ) = 1 1 + x f'(x)=\frac {1}{1+x} f(x)=1+x1, f ′ ′ ( x ) = − 1 ( 1 + x ) 2 f''(x)=\frac {-1}{(1+x)^2} f′′(x)=(1+x)21
    将之代入麦克劳林公式: l n ( 1 + x ) = 0 + x − x 2 2 ! + . . . + ( − 1 ) n − 1 x n n + R n ( x ) ln(1+x) = 0+x-\frac {x^2}{2!}+...+\frac {(-1)^{n-1}x^n}{n}+ Rn(x) ln(1+x)=0+x2!x2+...+n(1)n1xn+Rn(x)

3. 函数的凹凸性
    设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有:
     f ( λ x 1 + ( 1 − λ ) x 2 ) < = λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(λx_1+(1-λ)x_2)<=λf(x_1)+(1-λ)f(x_2) f(λx1+(1λ)x2)<=λf(x1)+(1λ)f(x2)
那么这个函数为下凸函数(convex),反之为下凹函数, 如下图所示。
    同时,也可以利用函数的二阶导数进行分辨:
     - 二阶导数>=0,随着自变量的增大,切线斜率越来越大,下凸函数;
     - 二阶导数<=0,随着自变量的增大,切线斜率越来越小,下凹函数;
在这里插入图片描述

Softmax

在这里插入图片描述
在这里插入图片描述

总结

    本文简单整理了机器学习所涵盖的数学知识点,以结论的形式进行呈现,可作为便捷速查表,后续会继续进行完善!
    转载请注明出处,谢谢!

  • 3
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《斯坦福大学机器学习数学基础.pdf》是一本由斯坦福大学开发的机器学习教材。本书将数学基础机器学习算法相结合,旨在向读者介绍机器学习所需的数学知识。 该书首先介绍了线性代数的基础知识。线性代数是机器学习中常用的工具,被广泛应用于数据处理和模型训练中。本书从向量、矩阵和线性变换等基本概念开始,逐步讲解了线性方程组、行列式、特征值与特征向量等重要内容,为读者提供了深入理解线性代数的基础。 接着,本书介绍了概率论和统计学的相关知识。概率论是机器学习的核心概念之一,它用于描述和解释不确定性。统计学是机器学习中的重要工具,利用统计方法对数据进行分析和建模。本书讲解了概率论的基本概念、条件概率和贝叶斯定理等内容,同时介绍了统计学中的假设检验、参数估计和回归分析等方法。 最后,本书还介绍了线性回归、逻辑回归、支持向量机等常用的机器学习算法。这些算法建立在数学基础之上,通过数学模型实现对数据的学习和预测。本书通过具体的案例分析和实践操作,让读者理解这些算法的原理和实际应用。 总之,《斯坦福大学机器学习数学基础.pdf》是一本系统而全面的机器学习教材,涵盖了机器学习所需的数学基础知识。读者通过学习本书,将能够理解和应用机器学习算法,从而在实际问题中进行数据分析和模型构建。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值