魔兽世界 | 宏命令教程

一、什么是宏命令

有了宏命令,可以很大程度的解放双手,开启懒人脸滚键盘模式,本篇文章就简单讲解一下基本宏指令,并尝试完成一套一件输出宏

二、基本宏速查表

#showtooltip多用于宏命令的开头,让按钮显示技能的说明和技能的图标
/cast xxx施放技能,如/cast 意气风发
/castsequence reset=6按顺序释放技能,重置条件为6s。6s后技能列表初始化,跳转到第一条技能
/use 饰品名字使用饰品

三、详解宏指令

#showtooltip

多用于宏命令的开头,让按钮显示技能的说明和技能的图标,默认是问号。若后边跟着技能名字,则宏图标则更换为技能图标。

例如:
#showtooltip 死亡之握

/cast

施放技能,如/cast 意气风发
可添加参数“!”,如 /cast !自动攻击。!表示取非的操作,如果自动攻击正在执行中,则不进行此操作。若没有此技能正在执行,则执行此技能。

/castsequence

    当你第一次点击这个宏时,它施放列表中的第一个法术,第二次点击的时候,施放第二个法术,以此类推。
    当它施放完最后一个时,又回到起始点开始循环。

-如果法术无法施放(冷却,超出距离,法力不足等等情况下),序列就不会走到下一个法术,下一次你再点这个宏的时候,它会再度尝试施放第一个法术.

-你可以给这个宏附加之前提到过的条件选项,但只能对整个序列起作用,不能作用到每一个。

/castsequence 附加参数reset

reset=N/target/combat/shift/alt/ctrl

“reset=target”,target为重置时间,例如6,当超过6s后,/castsequence后的技能列表初始化,再次执行宏,将会重新从第一个技能开始执行。

“reset=target”,那序列将在你改变目标时就重置到起始位置

“reset=combat”,每当你脱离战斗,这个序列就会被重置了。

“reset=shift/alt/ctrl”,你使用时是否按住了特定的按键,按住就被重置。

2.读入数据

黑暗敕令和亡者之握宏
 #showtooltip 死亡之握 /cast [modifier:alt]黑暗命令; [modifier:ctrl] 死亡之握; [target=mouseover,exist] 凋零缠绕; 凋零缠绕 
按住alt黑暗命令,按住ctrl用死亡之握,否则就对鼠标指向目标用死缠(没有则对当前目标)

总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

这是一个简单的基于树莓派的人脸表情识别代码,使用OpenCV和Keras库实现。请注意,此代码仅供参考,您需要根据实际情况进行修改。 ```python import cv2 import numpy as np from keras.models import load_model # 加载人脸识别模型 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载表情识别模型 model = load_model('emotion_detection_model.h5') # 定义表情标签 emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise'] # 打开树莓派摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头数据 ret, frame = cap.read() # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 遍历每个人脸并进行表情识别 for (x, y, w, h) in faces: # 提取人脸图像 face = gray[y:y+h, x:x+w] # 调整大小为48x48像素 face = cv2.resize(face, (48, 48)) # 归一化像素值 face = face / 255.0 # 转换为4D张量 face = np.expand_dims(face, axis=0) face = np.expand_dims(face, axis=-1) # 进行表情预测 predictions = model.predict(face) # 获取最大概率的表情标签 label = emotion_labels[np.argmax(predictions)] # 在图像上绘制人脸和表情标签 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # 显示结果 cv2.imshow('Face Emotion Detection', frame) # 按q键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头并关闭窗口 cap.release() cv2.destroyAllWindows() ``` 请注意,上述代码只是一个示例,您需要根据实际情况进行修改,比如修改人脸识别和表情识别模型的路径、调整人脸检测参数和表情标签等。此外,也需要注意摄像头的调用和权限,以免出现问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值