day19笔记
1.题目描述
2.代码构思(debug)
贪心思想:
因为本题用到了贪心算法所以先来了解一下「贪心算法」的问题需要满足的条件:
最优子结构:规模较大的问题的解由规模较小的子问题的解组成,规模较大的问题的解只由其中一个规模较小的子问题的解决定;
无后效性:后面阶段的求解不会修改前面阶段已经计算好的结果;
贪心选择性质:从局部最优解可以得到全局最优解。
综上可得:贪心算法就是做出当前状态下的最优选择认为就可以解决问题。
思路分析:
其实如果把题目换个角度考虑可能就比较好理解了,如果总油量减去总消耗大于等于零那么一定可以跑完一圈,因此要跑完一圈就要保证在各个站点的加油站 剩油量 rest[i] >= 0。
局部最优:若当前累加到 j的和 curSum < 0,起始位置至少要是 j+1,因为从 j开始一定不行。
全局最优:找到可以跑一圈的起始位置。
实现步骤:
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
遍历数组 i 从 0开始累加 rest[i],和记为 curSum;
计算每个加油站的剩余量 curSum += gas[i] - cost[i]
若 curSum小于零,说明[0, i]区间都不能作为起始位置,起始位置从 i+1算起,curSum清零重新计算。
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
if not gas:
return -1
gassum = sum(gas)
costsum = sum(cost)
if costsum > gassum:
return -1
start = 0
cursum = 0
sum1 = 0
for i in range(len(gas)):
cursum += gas[i] - cost[i]
sum1 += gas[i] - cost[i]
if cursum < 0:
start = i + 1
cursum = 0
if sum1 < 0:
return -1
return start