头文件是快速排序的代码,mian函数是一个测试样例
快排就是每次取到一个枢轴量放在最终应该在的位置(左边比他大,右边比他小,用的是前后不断找不同的交换,但是与枢轴量相等的情况处理 都可以,因为前后不同换的时候也无法保持稳定性),然后再将左边和右边采用相同的操作。
quicksort1.h
#pragma once
template<typename keytype>
int Partition(keytype data[], int low, int high) {
int pivot = data[low];
while (low < high) {
while (low < high && pivot <= data[high]) --high;//>和包含=的区别呢,不能没有=的吧这是保持稳定性的
data[low] = data[high];
while (low < high && pivot >= data[low]) ++low;//那照理来说要是每次取的第一个不应该>,=的情况就该停了
data[high] = data[low];
}
data[low] = pivot;
return low;
}
template<typename keytype>
void quickSort(keytype data[], int low, int high) {
if (low < high) {
int pivotpos = Partition(data, low, high);
quickSort(data, low, pivotpos - 1);
quickSort(data, pivotpos + 1, high);
}
}
8.4quicksort.cpp
// 8.4quicksort.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//快速排序
#include <iostream>
#include"quicksort1.h"
using namespace std;
int main()
{
int data[8] = { 43,35,1,87,99,67,78,10 };
int length = 8;
cout << "原数列:" << endl;
for (int i = 0; i < length; ++i)
cout << data[i] << " ";
cout << endl;
quickSort(data, 0,length-1);
cout << "现快速数列1:" << endl;
for (int i = 0; i < length; ++i)
cout << data[i] << " ";
cout << endl;
return 0;
}
特别的:
关于时间和空间复杂度:
时间复杂度与空间复杂度都与递归深度有关,递归深度最好就是二叉树(o(logn)),最坏就是每次都是最边边上的情况(顺序的情况,无论顺序还是逆序都是需要)o(n)的时间
空间复杂度:最好:o(logn), 最坏:o(n)
时间复杂度:
最好:o(nlogn),每次递归都是能够选择到能够排到中间的值
最坏:o(n^2),顺序逆序
平均:o(nlogn),这个不是按照直接两个求平均来的哦哦
稳定性:不稳定
适用于:数组可实现,链表不太行,因为有往前往后找,以及取左取右
存疑:这个递归每次拍到中间的值能不能有个啥子方法就每次都是二叉树前面排的?不过应该不行...不然都知道谁在二叉树哪个位置了,那还用这排干嘛直接二叉树变变变