自适应控制-历年题-Part2

第三份

一、简答题(4x10+2.5x2分)
  1. 为什么采用负反馈技术?

    • 原开环系统本身可能不稳定,如果不采用反馈作为输入,得到的数据信息非常有限;另外考虑安全问题,所以需要采用负反馈技术。
  2. 什么是自适应控制?为什么采用自适应控制技术?并请给出适合应用自适应控制技术的场合?

  3. 系统辨识的基本要素有哪几方面?并予以解释。

    • 输入输出数据:(1)辨识的基础,要求必须包含有关系统特性的足够信息,信号变化强烈且呈现非周期性,要求信号频谱宽;(2)这些数据可以通过实验、观测或模拟得到,用于分析系统的行为和性能;(3)由观测实体而得,不唯一,受观测时间、观测目的、观测手段影响。
    • 模型类:(1)需要建立一个数学模型来描述系统的动态行为。这个模型可以是基于物理原理的,也可以是基于数据统计的,目的是找到一个能够准确描述系统行为的数学表达式;(2)规定了模型的形式,不唯一,受辨识目的,辨识方法影响。
    • 准则:(1)评判“辨识得到的模型”是否满足“实际需要”的一个“准则”;(2)规定了模型和实体等价的评判标准,不唯一,受辨识目的,辨识方法影响。
  4. 写出标准最小二乘参数辨识方法的准则函数,并说明各项的具体意义。

    • 准则: J = ∑ i = 1 N [ y ( n + i ) − y ^ ( n + i ) ] 2 J=\sum_{i=1}^N\left[ y(n+i)-\hat y(n+i) \right]^2 J=i=1N[y(n+i)y^(n+i)]2
    • y ( n + i ) , i = 1 , … , N y(n+i),i=1,\ldots,N y(n+i),i=1,,N 为第 i i i 时刻的真实输出, y ^ ( n + i ) , i = 1 , … , N \hat y(n+i),i=1,\ldots,N y^(n+i),i=1,,N 为第 i i i 时刻采用辨识得到的系统对输出的估计, N N N 是数据点的数量,表示参与参数估计的数据量;
    • J J J 表示了测量值与估计值残差的平方和,标准最小二乘参数辨识的目标是找到使 J J J 最小的参数值,即通过调整参数值来使模型的输出与实际观测值最接近。
  5. 最小二乘参数估计值统计特性中提到的“无偏性”和“一致性”各指什么?什么条件下,最小二乘参数估计是一致收敛的?

    • 对如下模型:
      y ( k ) = − a 1 y ( k − 1 ) − a 2 y ( k − 2 ) − ⋯ − a n a y ( k − n a ) + b 1 u ( k − 1 ) + b 2 u ( k − 2 ) + ⋯ + b n b u ( k − n b ) + e ( k ) y(k)= -a_1y(k-1)- a_2y(k-2)- \cdots- a_{na}y(k-na)+ b_1u(k-1)+ b_2u(k-2)+ \cdots+ b_{nb}u(k-nb)+ e(k) y(k)=a1y(k1)a2y(k2)anay(kna)+b1u(k1)+b2u(k2)++bnbu(knb)+e(k)
      当满足满足以下四个条件

      • 条件1,如果 e ( k ) e(k) e(k) 是白噪声序列(四阶矩存在);
      • 条件2,待辨识对象的特征值在单位圆内;
      • 条件3,输入序列 u ( k ) u(k) u(k) e ( k ) e(k) e(k) 噪声序列相互独立;
      • 条件4,输入信号必须是 n b nb nb 阶持续激励信号;

      则最小二乘参数估计是一致收敛的,即
      lim ⁡ N → ∞ θ ^ L S = θ 0 ,    W . P . 1 \lim_{N \rightarrow \infin} \hat\theta_{LS}= \theta_0,\ \ W.P.1 Nlimθ^LS=θ0,  W.P.1

  6. 什么是白噪声?请分别从频域、时域两个角度阐明它的特点。

  7. 谈谈你对“谱密度”的认识,包括什么是谱密度?为什么要引入这个概念?

    • 什么是谱密度
      • (1)一个“能量有界”的函数的能量在时间轴上的分布可以等价为它的“傅里叶变换”在频域轴上的分布;(2)平稳过程的“均方值”即为信号的平均功率,是对平稳随机(过程)信号“平均功率大小”的度量;(3)“平均功率谱密度(谱密度)”是对平均功率在频率轴上的分布的一个度量;
      • (GPT)谱密度是信号处理和系统分析中的重要概念,它描述了信号的频率内容在频域中的分布情况。谱密度可以用来描述信号的频率特性,包括信号中包含的各种频率成分的强度和分布情况。(1)功率谱密度:描述信号功率在频域中的分布情况,是一种常用的信号频率特性描述方法。功率谱密度可以帮助我们了解信号中不同频率成分的能量分布情况,对于信号的特性分析和滤波器设计非常有用;(2)交叉谱密度:描述两个信号之间的频率相关性,常用于分析多个信号之间的关系,例如在信号处理中的相关性分析、系统辨识等领域。
    • (GPT)引入谱密度的概念有以下几个原因:
      • 频域分析:谱密度提供了一种在频域中分析信号特性的方法,可以帮助我们了解信号中各种频率成分的分布情况,对于频域滤波、频谱分析等问题提供了重要的工具;
      • 随机过程分析:在随机过程中,谱密度可以帮助我们了解随机过程的频率特性,包括随机过程中各种频率成分的强度和相关性,这对于随机信号的建模和分析非常重要;
      • 信号处理和通信系统:在信号处理和通信系统中,谱密度可以帮助我们设计滤波器、分析通信信道的特性、进行频谱分析等,对于系统分析和设计有着重要的应用价值。
  8. 什么是数据饱和现象?如何解决这一问题?

    • 直观上,随着采集到的数据越来越多,递推最小二乘法应该给出更精确的参数估计值;但实际上,随着迭代次数增加,“估计值”与“真实值”的偏差往往会越来越远。其原因是随着递推次数的增加,旧的数据会累积的越来越多,造成结果是把新的数据信息淹没,最终导致参数估计无法进行,算法失效。
    • 渐消记忆法:增加新数据在计算中的权重,减小老数据在计算中的权重;限定记忆法:去掉一部分老数据。
  9. 什么是 M 序列?简述选用“M序列”的原则?

    • (GPT)选用M序列的原则可以从以下几个方面考虑:
      • 长度:M序列的长度应当足够长,以满足实际应用的需求。较长的M序列可以提供更好的性能,例如更好的自相关性和互相关性特性;
      • 互相关性:M序列的互相关性应当尽可能小,以便在通信系统中减小互相干干扰。较小的互相关性有助于提高系统的性能;
      • 自相关性:M序列的自相关性应当尽可能大,以提供良好的自同步性能。较大的自相关性有助于提高信号的同步性能;
      • 线性复杂度:M序列的线性复杂度应当尽可能高,以提高其抗干扰能力。高线性复杂度的M序列可以提供更好的性能和安全性;
      • 实现复杂度:M序列的实现复杂度应当尽可能低,以便在实际系统中能够高效实现。低实现复杂度有助于提高系统的实用性和成本效益。
  10. 对于以下 Lyapunov 候选函数以及该函数沿着状态轨迹的关于时间的导数:
    V ( e , θ 1 , θ 2 ) = 1 2 [ e 2 + 1 b γ ( b θ 2 + a − a m ) 2 + 1 b γ ( b θ 1 − b m ) 2 ] d V d t = − a m e 2 + 1 γ ( b θ 2 + a − a m ) ( d θ 2 d t − γ y e ) + 1 γ ( b θ 1 − b m ) ( d θ 1 d t + γ u c e ) V(e,\theta_1,\theta_2)=\frac{1}{2}\left[e^2+\frac{1}{b\gamma}(b\theta_2+a-a_m )^2+\frac{1}{b\gamma}(b\theta_1-b_m)^2 \right] \\ \frac{\rm dV}{\rm dt}=-a_me^2+\frac{1}{\gamma}(b\theta_2+a-a_m)(\frac{\rm d\theta_2}{\rm dt}-\gamma ye )+\frac{1}{\gamma}(b\theta_1-b_m )(\frac{\rm d\theta_1}{\rm dt}+\gamma u_ce ) V(e,θ1,θ2)=21[e2+1(bθ2+aam)2+1(bθ1bm)2]dtdV=ame2+γ1(bθ2+aam)(dtdθ2γye)+γ1(bθ1bm)(dtdθ1+γuce)
    其中, e , θ 1 , θ 2 e,\theta_1,\theta_2 e,θ1,θ2 是状态变量, y , u c y,u_c y,uc 是时间的函数,其余均为常数,且 b > 0 , γ > 0 b>0,\gamma>0 b>0,γ>0

    请问:(1) V ( e , θ 1 , θ 2 ) V(e,\theta_1,\theta_2) V(e,θ1,θ2) 是正定还是半正定的?(2)当 d θ 1 d t = − γ u c e , d θ 2 d t = γ y e \frac{\rm d\theta_1}{\rm dt}=-\gamma u_c e,\frac{\rm d\theta_2}{\rm dt}=\gamma ye dtdθ1=γuce,dtdθ2=γye 时, d V d t \frac{\rm dV}{\rm dt} dtdV 是“负定”还是“半负定”的,为什么?

  11. 测试最小相位系统的频率特性时,为何只需测试幅频特性,而不用进一步测试系统的相频特性?

    • 在具有相同幅频特性的系统中,最小相位传递函数的相角范围在这类系统中是最小的,任何非最小相位系统传递函数的相角范围都大于最小相位系统的相角范围。因此,最小相位系统的幅频特性和相频特性之间具有唯一的对应关系,如果系统的幅值曲线在从 0 0 0 到无穷大的全部频率上给定,则相频特性曲线也被唯一确定,反之亦然。
    • (GPT)原因如下:
      • 最小相位系统的定义:最小相位系统是指其传递函数的极点全部位于左半平面,并且没有共轭极点。这种系统的相位响应是单调递增或递减的。由于最小相位系统没有共轭极点,其相位特性完全由幅频特性决定。
      • 幅频特性包含了相位信息:根据傅里叶变换的性质,系统的频率响应包含了幅度和相位信息。因此,通过测试幅频特性,我们已经获得了系统的幅度和相位信息。对于最小相位系统,由于其相位特性是由幅频特性唯一确定的,因此不需要额外测试系统的相位特性。
      • 简化测试过程:由于最小相位系统的特性,只需测试幅频特性就可以完全描述系统的频率特性。这样可以简化测试过程,减少测试成本和时间。
  12. 对于如下 T-S 模糊系统:

    ​ 规则库中共有 r r r 条规则,则第 i i i 条规则如下:

    ​ 如果 z 1 ( t ) z_1(t) z1(t) “属于” M i 1 M_{i1} Mi1 ,并且 z 2 ( t ) z_2(t) z2(t) “属于” M i 2 M_{i2} Mi2 ,…,并且 z p ( t ) z_p(t) zp(t) “属于” M i p M_{ip} Mip ,那么:
    X ˙ = A i X , i = 1 , 2 , … , r \dot X=A_iX,i=1,2,\ldots,r X˙=AiX,i=1,2,,r
    其中, z j ( t ) , j = 1 , 2 , … , p z_j(t),j=1,2,\ldots,p zj(t),j=1,2,,p 为条件变量, M i j , j = 1 , 2 , … , p M_{ij},j=1,2,\ldots,p Mij,j=1,2,,p 是模糊集合。

    假设每个局部线性系统对应的系统矩阵 A i A_i Ai 均是 Hurwitz 的,请问,此模糊系统的平衡点 0 0 0 是否一定是全局渐近稳定的?

    • A A A 为 Hurwitz 稳定的,则系统 X ˙ = A X \dot X=AX X˙=AX 是渐近稳定的;
    • 如果每个局部线性系统对应的系统矩阵 A i A_i Ai 均是 Hurwitz 的,那么每个局部系统的平衡点都是局部渐近稳定的,然而对于一个模糊系统,其行为取决于所有局部系统的相互作用,因此模糊系统的平衡点 0 0 0 不一定是全局渐近稳定的,需要利用 Lyapunov 稳定性理论或其他稳定性判别方法重新判断系统稳定性。
    • (GPT)对于给定的 T-S 模糊系统,如果每个局部线性系统对应的系统矩阵 A i A_i Ai 都是 Hurwitz 矩阵,即所有特征值的实部都是负的,那么该模糊系统的平衡点 0 0 0 不一定是全局渐近稳定的。虽然每个局部线性系统的稳定性都得到了保证,但是在 T-S 模糊系统中,全局渐近稳定性还需要考虑模糊控制器的整体性能。平衡点 0 0 0 是否全局渐近稳定还取决于模糊控制器的设计和规则库中的模糊规则。
    • (GPT)T-S(Takagi-Sugeno)模糊模型在以下情况下是全局渐近稳定的:
      • 条件部分是完备的:T-S 模糊模型的条件部分(即模糊规则的前提)需要是完备的,即对于任何可能的系统状态,至少存在一个规则的前提部分成立。这确保了模型在整个状态空间内都有定义。
      • 系统是全局渐近稳定的:T-S 模糊模型描述的系统本身必须是全局渐近稳定的。这意味着系统在任何初始条件下都会收敛到稳定的状态,而不会发散或周期性震荡。
二、计算题(5+5分)
  1. 给定质量的气体,不同的体积 V V V 对于着不同的压力 P P P 。根据热力学原理,压力和体积之间存在如下关系:
    P V r = c PV^r=c PVr=c
    其中, r , c r,c r,c 为待定常数, P P P V V V 在各采样点上是可观测的,请将上式化为最小二乘格式。

  2. 请在工作点 ( x 1 , x 2 , u ) (x_1,x_2,u) (x1,x2,u) ( π , 0 , 0 ) (\pi,0,0) (π,0,0) 处,对以下非线性系统进行线性化:
    x ˙ 1 = x 2 x ˙ 2 = − s i n ( x 1 ) + u c o s ( x 1 ) \dot x_1=x_2 \\ \dot x_2=-sin(x_1)+ucos(x_1) x˙1=x2x˙2=sin(x1)+ucos(x1)

    • f 1 = x 2 , f 2 = − s i n ( x 1 ) + u c o s ( x 1 ) f_1= x_2,f_2=-sin(x_1)+ucos(x_1) f1=x2,f2=sin(x1)+ucos(x1) ,对其求偏导:
      ∂ f 1 ∂ x 1 = 0 ∂ f 1 ∂ x 2 = 1 ∂ f 1 ∂ u = 0 ∂ f 2 ∂ x 1 = − c o s ( x 1 ) − u s i n ( x 1 ) ∂ f 2 ∂ x 2 = 0 ∂ f 2 ∂ u = c o s ( x 1 ) ∂ f 1 ∂ x 1 ∣ ( π , 0 , 0 ) = 0 ∂ f 1 ∂ x 2 ∣ ( π , 0 , 0 ) = 1 ∂ f 1 ∂ u ∣ ( π , 0 , 0 ) = 0 ∂ f 2 ∂ x 1 ∣ ( π , 0 , 0 ) = 1 ∂ f 2 ∂ x 2 ∣ ( π , 0 , 0 ) = 0 ∂ f 2 ∂ u ∣ ( π , 0 , 0 ) = − 1 \begin{matrix} \frac{\partial f_1}{\partial x_1} = 0 & \frac{\partial f_1}{\partial x_2} = 1 & \frac{\partial f_1}{\partial u} = 0 \\ \frac{\partial f_2}{\partial x_1} = -cos(x_1)-usin(x_1) & \frac{\partial f_2}{\partial x_2} = 0 & \frac{\partial f_2}{\partial u} = cos(x_1) \\ \frac{\partial f_1}{\partial x_1}|_{(\pi,0,0)} = 0 & \frac{\partial f_1}{\partial x_2}|_{(\pi,0,0)} = 1 & \frac{\partial f_1}{\partial u}|_{(\pi,0,0)} = 0 \\ \frac{\partial f_2}{\partial x_1}|_{(\pi,0,0)} = 1 & \frac{\partial f_2}{\partial x_2}|_{(\pi,0,0)} = 0 & \frac{\partial f_2}{\partial u}|_{(\pi,0,0)} = -1 \\ \end{matrix} x1f1=0x1f2=cos(x1)usin(x1)x1f1(π,0,0)=0x1f2(π,0,0)=1x2f1=1x2f2=0x2f1(π,0,0)=1x2f2(π,0,0)=0uf1=0uf2=cos(x1)uf1(π,0,0)=0uf2(π,0,0)=1
      于是:
      x ˙ 1 = ∂ f 1 ∂ x 1 ∣ ( π , 0 , 0 ) ( x 1 − π ) + ∂ f 1 ∂ x 2 ∣ ( π , 0 , 0 ) ( x 2 − 0 ) + ∂ f 1 ∂ u ∣ ( π , 0 , 0 ) ( u − 0 ) = x 2 x ˙ 2 = ∂ f 2 ∂ x 1 ∣ ( π , 0 , 0 ) ( x 1 − π ) + ∂ f 2 ∂ x 2 ∣ ( π , 0 , 0 ) ( x 2 − 0 ) + ∂ f 2 ∂ u ∣ ( π , 0 , 0 ) ( u − 0 ) = x 1 − π − u \begin{align} \dot x_1 &= \frac{\partial f_1}{\partial x_1}|_{(\pi,0,0)}(x_1-\pi) + \frac{\partial f_1}{\partial x_2}|_{(\pi,0,0)}(x_2-0)+\frac{\partial f_1}{\partial u}|_{(\pi,0,0)}(u-0) \\ &= x_2 \\ \dot x_2 &= \frac{\partial f_2}{\partial x_1}|_{(\pi,0,0)}(x_1-\pi) + \frac{\partial f_2}{\partial x_2}|_{(\pi,0,0)}(x_2-0)+\frac{\partial f_2}{\partial u}|_{(\pi,0,0)}(u-0) \\ &= x_1-\pi-u \end{align} x˙1x˙2=x1f1(π,0,0)(x1π)+x2f1(π,0,0)(x20)+uf1(π,0,0)(u0)=x2=x1f2(π,0,0)(x1π)+x2f2(π,0,0)(x20)+uf2(π,0,0)(u0)=x1πu
三、综合题(5+10+10分)
  1. 谈谈你对 MIT 模型参考自适应控制方案的理解?

    • 是一种基于模型参考自适应控制方法。该方法通过将参考模型和系统模型进行比较,并根据比较结果来自适应调整控制器参数。在 MIT 控制中,参考模型和系统模型中的误差被称为误差信号,控制器参数的调整取决于误差信号和误差信号的一阶导数,根据误差信号和误差信号的一阶导数的乘积的正负性来调整控制器的增加和减小;

    • MIT 方法的优点是可以适应系统的不确定性和时变性,不需要事先知道系统的精确模型,可以在系统运行中在线辨识和控制器的自适应调整,在实际中需要仔细考虑控制器设计和参数选择,保证系统的稳定性和控制性能。

    • (GPT)MIT(Model-Reference Adaptive Control,模型参考自适应控制)是一种自适应控制方法,旨在使系统的输出跟踪参考模型的输出。这种控制方法通常用于对未知、复杂或变化快速的系统进行控制。在MIT模型参考自适应控制中,有一个参考模型,它描述了所需的系统性能,包括期望的输出轨迹。控制器的任务是调节系统的输入,以使系统的输出尽可能接近参考模型的输出。MIT模型参考自适应控制的关键特点包括:

      • 自适应性:控制器具有自适应性,能够根据系统的实际行为进行调整,以实现输出跟踪。
      • 参数估计:通常,MIT控制器会估计系统的参数,以便进行适当的调节。这对于未知系统或系统参数变化较快的情况特别重要。
      • 稳定性:MIT控制器的设计通常考虑稳定性,以确保系统在各种工作条件下都能保持稳定。
      • 鲁棒性:MIT控制器通常具有一定的鲁棒性,能够应对系统建模误差、外部扰动和不确定性。

      MIT模型参考自适应控制在实际应用中具有很强的灵活性和适用性,可以应对各种复杂的控制问题。然而,对于一些非线性、高度不确定或具有特殊要求的系统,MIT控制器的设计和调试可能会更加复杂和困难。

  2. 简述基于超稳定性理论设计模型参考自适应控制器的思想,指出设计 ν , Ψ 1 ( ν , t , τ ) , Ψ 2 ( ν , t ) \nu,\Psi_1(\nu,t,\tau),\Psi_2(\nu,t) ν,Ψ1(ν,t,τ),Ψ2(ν,t) 的依据(不用求出具体数值),并画出基于以下参考模型、被控对象以及自适应控制律的控制系统的方框图:

    ​ 被控对象: ( 1 + a 1 D + a 2 D 2 ) y p = b p ⋅ u (1+a_1D+a_2D^2)y_p=b_p\cdot u (1+a1D+a2D2)yp=bpu

    ​ 参考模型: ( 1 + a 1 D + a 2 D 2 ) y m = b m ⋅ u (1+a_1D+a_2D^2)y_m=b_m\cdot u (1+a1D+a2D2)ym=bmu

    ​ 控制律:
    ( 1 + a 1 D + a 2 D 2 ) y p = b 0 ( e , t ) b p u e = y m − y p ν = ( c 1 D + c 0 ) e b 0 ( e , t ) = ∫ 0 t Ψ 1 ( ν , t , τ ) d τ + Ψ 2 ( ν , t ) + b 0 ( 0 ) Ψ 1 = k 1 ⋅ ν ⋅ u , k 1 > 0 Ψ 2 = k 2 ⋅ ν ⋅ u \begin{align} (1+a_1D+a_2D^2)y_p &= b_0(e,t)b_pu \\ e &= y_m-y_p \\ \nu &= (c_1D+c_0)e \\ b_0(e,t) &= \int_0^t\Psi_1(\nu,t,\tau)\rm d\tau + \Psi_2(\nu,t)+b_0(0) \\ \Psi_1 &= k_1 \cdot \nu \cdot u,k_1 >0 \\ \Psi_2 &= k_2 \cdot \nu \cdot u \end{align} (1+a1D+a2D2)ypeνb0(e,t)Ψ1Ψ2=b0(e,t)bpu=ymyp=(c1D+c0)e=0tΨ1(ν,t,τ)dτ+Ψ2(ν,t)+b0(0)=k1νu,k1>0=k2νu
    其中, D D D 为微分算子。

    • (GPT)基于超稳定性理论设计模型参考自适应控制器的思想是利用系统的超稳定性特性来设计自适应控制器,以实现对系统的鲁棒稳定性和鲁棒性能的改善。超稳定性理论是一种针对非线性系统鲁棒性分析和控制设计的理论框架,其核心思想是通过引入超稳定性函数来描述系统的稳定性特性,并基于这一函数设计控制器。

      具体而言,基于超稳定性理论设计模型参考自适应控制器的思想包括以下几个关键步骤:

      1. 超稳定性函数的选择:首先选择适当的超稳定性函数,通常是一种满足一定条件的正定函数,用于描述系统的稳定性特性。超稳定性函数的选择对于后续的控制器设计至关重要,不同的超稳定性函数选择会导致不同的控制性能和稳定性特性。

      2. 模型参考自适应控制器设计:利用所选的超稳定性函数,结合模型参考自适应控制器设计方法,构建自适应控制器的结构。模型参考自适应控制器通常包括参考模型、参数估计器和控制律等部分,其中参考模型用于描述期望的系统响应,参数估计器用于估计系统的参数,控制律用于根据参考模型和参数估计器的输出生成控制指令。

      3. 控制器参数更新规则设计:基于超稳定性理论,设计控制器参数的更新规则,使得控制器能够根据系统的实际响应和参考模型的期望响应进行参数调整,以实现对系统的自适应调节和鲁棒性能改善。

      4. 稳定性和收敛性分析:对设计的模型参考自适应控制器进行稳定性和收敛性分析,确保控制器能够在各种工作条件下保持系统的稳定性,并且能够在有限时间内收敛到期望的状态。

      总的来说,基于超稳定性理论设计模型参考自适应控制器的思想是通过利用系统的超稳定性特性,设计自适应控制器以实现对系统的鲁棒稳定性和鲁棒性能的改善。这种方法能够有效应对非线性、不确定性等复杂系统特性,提高控制系统的鲁棒性和适应性。

    • 不会

  3. 对电机-负载控制系统:
    y = 1 s ω ω = G 2 ( s ) [ G 1 ( s ) u + d ] y=\frac{1}{s}\omega \\ \omega = G_2(s)[G_1(s)u+d] y=s1ωω=G2(s)[G1(s)u+d]
    其中, d d d 表示外界力矩干扰; G 1 ( s ) , G 2 ( s ) G_1(s),G_2(s) G1(s),G2(s) 均为一阶惯性环节,前者代表控制电压 u u u 和电机输出力矩之间的传递函数,后者表示力矩和电机轴输出转速 ω \omega ω 之间的传递函数, y y y 为电机轴的输出角位置,采用光电码盘或光栅尺测量,以上系统中 G 1 ( s ) G_1(s) G1(s) G 2 ( s ) G_2(s) G2(s) 的具体参数未知,现需要对以上系统进行模型辨识,请给出辨识思路,并说明理由。

    • 由于 G 1 ( s ) , G 2 ( s ) G_1(s),G_2(s) G1(s),G2(s) 均为一阶惯性环节,设:
      G 1 ( s ) = k 1 a 1 s + 1 G 2 ( s ) = k 2 a 2 s + 1 \begin{matrix} G_1(s)=\frac{k_1}{a_1s+1} & G_2(s)=\frac{k_2}{a_2s+1} \end{matrix} G1(s)=a1s+1k1G2(s)=a2s+1k2
      于是系统方程为:
      y ˙ = k 2 a 2 s + 1 [ k 1 a 1 s + 1 ⋅ u + d ] = k 1 k 2 a 1 a 2 s 2 + ( a 1 + a 2 ) s + 1 u + k 2 a 2 s + 1 d \dot y =\frac{k_2}{a_2s+1}\left[ \frac{k_1}{a_1s+1}\cdot u +d \right] =\frac{k_1k_2}{a_1a_2s^2+(a_1+a_2)s+1}u+\frac{k_2}{a_2s+1}d y˙=a2s+1k2[a1s+1k1u+d]=a1a2s2+(a1+a2)s+1k1k2u+a2s+1k2d
      假设采样时间为 T T T ,改写为差分方程,用增广矩阵最小二乘。

第四份

一、简答题(6x10分)
  1. 为什么采用负反馈技术?

  2. 什么是自适应控制?为什么采用自适应控制技术?并请给出适合应用自适应控制技术的场合?

  3. 谈谈你从课堂上都学习了哪些参数辨识方法,并简述这些辨识方法之间的联系?

  4. 最小二乘参数估计值的统计特性中提到的“无偏性”和“一致性”各指什么?

  5. 谈谈你对白噪声的理解。

  6. 谈谈你对“谱密度”的认识,包括什么是谱密度?为什么要引入这个概念?

  7. 谈谈你对 M 序列的理解。

  8. 对于以下 Lyapunov 候选函数以及该函数沿着状态轨迹的关于时间的导数:
    V ( e , θ 1 , θ 2 ) = 1 2 [ e 2 + 1 b γ ( b θ 2 + a − a m ) 2 + 1 b γ ( b θ 1 − b m ) 2 ] d V d t = − a m e 2 + 1 γ ( b θ 2 + a − a m ) ( d θ 2 d t − γ y e ) + 1 γ ( b θ 1 − b m ) ( d θ 1 d t + γ u c e ) V(e,\theta_1,\theta_2)=\frac{1}{2}\left[e^2+\frac{1}{b\gamma}(b\theta_2+a-a_m )^2+\frac{1}{b\gamma}(b\theta_1-b_m)^2 \right] \\ \frac{\rm dV}{\rm dt}=-a_me^2+\frac{1}{\gamma}(b\theta_2+a-a_m)(\frac{\rm d\theta_2}{\rm dt}-\gamma ye )+\frac{1}{\gamma}(b\theta_1-b_m )(\frac{\rm d\theta_1}{\rm dt}+\gamma u_ce ) V(e,θ1,θ2)=21[e2+1(bθ2+aam)2+1(bθ1bm)2]dtdV=ame2+γ1(bθ2+aam)(dtdθ2γye)+γ1(bθ1bm)(dtdθ1+γuce)
    其中, e , θ 1 , θ 2 e,\theta_1,\theta_2 e,θ1,θ2 是状态变量, y , u c y,u_c y,uc 是时间的函数,其余均为常数,且 b > 0 , γ > 0 b>0,\gamma>0 b>0,γ>0

    请问:(1) V ( e , θ 1 , θ 2 ) V(e,\theta_1,\theta_2) V(e,θ1,θ2) 是正定还是半正定的?(2)当 d θ 1 d t = − γ u c e , d θ 2 d t = γ y e \frac{\rm d\theta_1}{\rm dt}=-\gamma u_c e,\frac{\rm d\theta_2}{\rm dt}=\gamma ye dtdθ1=γuce,dtdθ2=γye 时, d V d t \frac{\rm dV}{\rm dt} dtdV 是“负定”还是“半负定”的,为什么?

  9. 对于如下 T-S 模糊系统:

    ​ 规则库中共有 r r r 条规则,则第 i i i 条规则如下:

    ​ 如果 z 1 ( t ) z_1(t) z1(t) “属于” M i 1 M_{i1} Mi1 ,并且 z 2 ( t ) z_2(t) z2(t) “属于” M i 2 M_{i2} Mi2 ,…,并且 z p ( t ) z_p(t) zp(t) “属于” M i p M_{ip} Mip ,那么:
    X ˙ = A i X , i = 1 , 2 , … , r \dot X=A_iX,i=1,2,\ldots,r X˙=AiX,i=1,2,,r
    其中, z j ( t ) , j = 1 , 2 , … , p z_j(t),j=1,2,\ldots,p zj(t),j=1,2,,p 为条件变量, M i j , j = 1 , 2 , … , p M_{ij},j=1,2,\ldots,p Mij,j=1,2,,p 是模糊集合。

    假设每个局部线性系统对应的系统矩阵 A i A_i Ai 均是 Hurwitz 的,请问,此模糊系统的平衡点 0 0 0 是否一定是全局渐近稳定的?

  10. 谈谈你对 MIT 模型参考自适应控制方案的理解?

二、计算题(5+5分)
  1. 考虑如下系统:
    y ( k ) + 0.5 y ( k − 1 ) = e ( k ) y(k)+0.5y(k-1)=e(k) y(k)+0.5y(k1)=e(k)
    其中, e ( k ) e(k) e(k) 是白噪声序列, y ( k ) y(k) y(k) 是系统的输出。请给出对输出 y ( k ) y(k) y(k) 的一步最小方差预测 y ^ ( k + 1 / k ) \hat y(k+1/k) y^(k+1/k) ,并阐述理由。

    • 由题 d = 1 , n = 1 d=1,n=1 d=1,n=1 ,设 F = 1 , G = g 0 F=1,G=g_0 F=1,G=g0 ,有:
      C = 1 = A F + z − 1 G = ( 1 + 0.5 z − 1 ) ⋅ 1 + z − 1 g 0 = 1 + ( 0.5 + g 0 ) z − 1 C=1=AF+z^{-1}G=(1+0.5z^{-1})\cdot 1+z^{-1}g_0=1+(0.5+g_0)z^{-1} C=1=AF+z1G=(1+0.5z1)1+z1g0=1+(0.5+g0)z1
      于是, g 0 = − 0.5 g_0=-0.5 g0=0.5 ,于是
      y ^ ( k + 1 / k ) = G C y ( k ) = 0.5 1 y ( k ) = − 0.5 y ( k ) \hat y(k+1/k)=\frac{G}{C}y(k)=\frac{0.5}{1}y(k)=-0.5y(k) y^(k+1/k)=CGy(k)=10.5y(k)=0.5y(k)

    • 不考虑控制输入 u ( k ) u(k) u(k) 的推导过程:
      S 1 : C = A F + z − d G ⟶ C A = F + z − d G A S 2 : 不考虑控制输入, y ( k ) = λ C ε ( k ) S 3 : y ( k + d ) = λ C A ε ( k + d ) = λ [ F + z − d G A ] ε ( k + d ) = λ G A ε ( k ) + λ F ε ( k + d ) S 4 : 由于, λ ε ( k ) = A C y ( k ) S 5 : y ( k + d ) = G A [ A C y ( k ) ] + λ F ε ( k + d ) = G C y ( k ) + λ F ε ( k + d ) \begin{align} S1 &: C=AF+z^{-d}G \longrightarrow \frac{C}{A}=F+z^{-d}\frac{G}{A} \\ S2 &: 不考虑控制输入,y(k) =\lambda C \varepsilon(k) \\ S3 &: y(k+d) =\lambda\frac{C}{A}\varepsilon(k+d) = \lambda\left[F+z^{-d}\frac{G}{A}\right]\varepsilon(k+d) = \lambda\frac{G}{A}\varepsilon(k)+\lambda F\varepsilon(k+d) \\ S4 &: 由于,\lambda\varepsilon(k)=\frac{A}{C}y(k) \\ S5 &:y(k+d) = \frac{G}{A}\left[ \frac{A}{C}y(k) \right]+\lambda F\varepsilon(k+d) = \frac{G}{C}y(k)+\lambda F\varepsilon(k+d) \end{align} S1S2S3S4S5:C=AF+zdGAC=F+zdAG:不考虑控制输入,y(k)=λ(k):y(k+d)=λACε(k+d)=λ[F+zdAG]ε(k+d)=λAGε(k)+λ(k+d):由于,λε(k)=CAy(k):y(k+d)=AG[CAy(k)]+λ(k+d)=CGy(k)+λ(k+d)

  2. 请在工作点 ( x 1 , x 2 , u ) (x_1,x_2,u) (x1,x2,u) ( π , 0 , 0 ) (\pi,0,0) (π,0,0) 处,对以下非线性系统进行线性化:
    x ˙ 1 = x 2 x ˙ 2 = − s i n ( x 1 ) + u c o s ( x 1 ) \dot x_1=x_2 \\ \dot x_2=-sin(x_1)+ucos(x_1) x˙1=x2x˙2=sin(x1)+ucos(x1)

三、综合题(5+5+20分)
  1. 给定质量的气体,不同的体积 V V V 对于着不同的压力 P P P 。根据热力学原理,压力和体积之间存在如下关系:
    P V r = c PV^r=c PVr=c
    其中, r , c r,c r,c 为待定常数, P P P V V V 在各采样点上是可观测的,请问如何辨识上式中的未知参数?

  2. 简述基于超稳定性理论设计模型参考自适应控制器的思想,指出设计 ν , Ψ 1 ( ν , t , τ ) , Ψ 2 ( ν , t ) \nu,\Psi_1(\nu,t,\tau),\Psi_2(\nu,t) ν,Ψ1(ν,t,τ),Ψ2(ν,t) 的依据(不用求出具体数值),并画出基于以下参考模型、被控对象以及自适应控制律的控制系统的方框图:

    ​ 被控对象: ( 1 + a 1 D + a 2 D 2 ) y p = b p ⋅ u (1+a_1D+a_2D^2)y_p=b_p\cdot u (1+a1D+a2D2)yp=bpu

    ​ 参考模型: ( 1 + a 1 D + a 2 D 2 ) y m = b m ⋅ u (1+a_1D+a_2D^2)y_m=b_m\cdot u (1+a1D+a2D2)ym=bmu

    ​ 控制律:
    ( 1 + a 1 D + a 2 D 2 ) y p = b 0 ( e , t ) b p u e = y m − y p ν = ( c 1 D + c 0 ) e b 0 ( e , t ) = ∫ 0 t Ψ 1 ( ν , t , τ ) d τ + Ψ 2 ( ν , t ) + b 0 ( 0 ) Ψ 1 = k 1 ⋅ ν ⋅ u , k 1 > 0 Ψ 2 = k 2 ⋅ ν ⋅ u \begin{align} (1+a_1D+a_2D^2)y_p &= b_0(e,t)b_pu \\ e &= y_m-y_p \\ \nu &= (c_1D+c_0)e \\ b_0(e,t) &= \int_0^t\Psi_1(\nu,t,\tau)\rm d\tau + \Psi_2(\nu,t)+b_0(0) \\ \Psi_1 &= k_1 \cdot \nu \cdot u,k_1 >0 \\ \Psi_2 &= k_2 \cdot \nu \cdot u \end{align} (1+a1D+a2D2)ypeνb0(e,t)Ψ1Ψ2=b0(e,t)bpu=ymyp=(c1D+c0)e=0tΨ1(ν,t,τ)dτ+Ψ2(ν,t)+b0(0)=k1νu,k1>0=k2νu
    其中, D D D 为微分算子。

    • 不会
  3. What have you learned from Prof. Koivo’s course and what have you intended to learn from his courese?

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值