MIT模型参考自适应例题

G ( s ) = a s 2 + b s + 1 G(s)=\frac{a}{s^2+bs+1} ，可以得到 y m ¨ + 2 y m + y m = k u c \ddot{y_m}+2y_m+y_m=ku_c ,
G m ( s ) = k s 2 + 2 s + 1 G_m(s)=\frac{k}{s^2+2s+1} ,可以得到 y ¨ + b y ˙ + y = a u \ddot {y}+b\dot{y}+y=au ,
u = θ 1 u c − θ 2 y u=\theta_1u_c-\theta_2y ，可以得到 y ¨ + b y ˙ + y = a ( θ 1 u c − θ 2 y ) \ddot {y}+b\dot{y}+y=a(\theta_1u_c-\theta_2y) ,

y ¨ + b y ˙ + ( 1 + a θ 2 ) y = a θ 1 u c \ddot {y}+b\dot{y}+(1+a\theta_2)y=a\theta_1u_c ,
y m ¨ + 2 y m + y m = k u c \ddot{y_m}+2y_m+y_m=ku_c ,

e = y − y m e=y-y_m ,
e ¨ = y ¨ − y m ¨ = a θ 1 u c − ( + b y ˙ + ( 1 + a θ 2 ) y ) − k u c + ( 2 y m + y m ) = − b e ˙ − ( 1 + a θ 2 ) e + ( a − b ) y m ˙ − a θ 2 y m + ( a θ 1 − k ) u c \ddot{e}=\ddot{y}-\ddot{y_m}=a\theta_1u_c-(+b\dot{y}+(1+a\theta_2)y)-ku_c+(2y_m+y_m)=-b\dot{e}-(1+a\theta_2)e+(a-b)\dot{y_m}-a\theta_2y_m+(a\theta_1-k)u_c
∂ e ¨ ∂ θ 1 = − b ∂ e ˙ ∂ θ 1 − ( 1 + a θ 2 ) ∂ e ∂ θ 1 + a u c , ( s 2 + b s + 1 + a θ 2 ) ∂ e ∂ θ 1 = a u c \frac{\partial{\ddot{e}}}{\partial{\theta_1}}=-b\frac{\partial{\dot{e}}}{\partial{\theta_1}}-(1+a\theta_2)\frac{\partial{e}}{\partial{\theta_1}}+au_c,(s^2+bs+1+a\theta_2)\frac{\partial{e}}{\partial{\theta_1}}=au_c
∂ e ¨ ∂ θ 2 = − b ∂ e ˙ ∂ θ 2 − ( 1 + a θ 2 ) ∂ e ∂ θ 2 − a y , ( s 2 + b s + 1 + a θ 2 ) ∂ e ∂ θ 2 = − a y \frac{\partial{\ddot{e}}}{\partial{\theta_2}}=-b\frac{\partial{\dot{e}}}{\partial{\theta_2}}-(1+a\theta_2)\frac{\partial{e}}{\partial{\theta_2}}-ay,(s^2+bs+1+a\theta_2)\frac{\partial{e}}{\partial{\theta_2}}=-ay
∂ e ∂ θ 1 = a u c ( s 2 + b s + 1 + a θ 2 ) , ∂ e ∂ θ 2 = − a y s 2 + b s + 1 + a θ 2 \frac{\partial{e}}{\partial{\theta_1}}=\frac{au_c}{(s^2+bs+1+a\theta_2)},\frac{\partial{e}}{\partial{\theta_2}}=\frac{-ay}{s^2+bs+1+a\theta_2}
θ 1 ¨ = − γ e ∂ e ∂ θ 1 = − γ e a u c ( s 2 + b s + 1 + a θ 2 ) \ddot{\theta_1}=-\gamma e\frac{\partial{e}}{\partial{\theta_1}}=-\gamma e\frac{au_c}{(s^2+bs+1+a\theta_2)}
θ 2 ¨ = − γ e ∂ e ∂ θ 2 = − γ e − a y s 2 + b s + 1 + a θ 2 \ddot{\theta_2}=-\gamma e\frac{\partial{e}}{\partial{\theta_2}}=-\gamma e\frac{-ay}{s^2+bs+1+a\theta_2}

• 1
点赞
• 6
收藏
觉得还不错? 一键收藏
• 1
评论
04-29
12-03
07-13
10-15
01-25 413
09-12 4029
12-10 2万+

“相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。