听说这道题还能用分块做。。。
lct的第二题,写起来磕磕绊绊。主要是因为lct把“原树”拆成了“辅助树”,换句话说原树就是棵虚数,而我做题的时候一直在往原树上套,套着套着就乱掉了。。。
引用一下这位大神的博客:
他的写法看起来十分简单有木有。而且也不用再套上其他的数据结构,是我找到的最好的方法了。
他的做法就是一开始把所有能够走到的点连起来。虽然看起来不是一棵二叉树,但是后面access的时候会不断地调整。(类似于裸lct一开始每个点都是一棵树,然后不断access合并重组)本身我对翻转操作不太熟悉,这个做法在没有用到翻转操作的情况下断链重连厉害了啊。
假设出界的节点是0,询问的时候查找0的左子树大小,也就是能够走到终点的点的个数。
#include<cmath>
#include<cstdio>
#include<vector>
#include <queue>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 2000000000
#define mod 1000000007
#define N 200010
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
#define mm(x,a) memset(x,a,sizeof(x));
using namespace std;
int size[N],ch[N][2],fa[N];
bool rt[N];
int n,m,i,x,y,opt;
void pushup(int x) {size[x]=size[ch[x][0]]+size[ch[x][1]]+1;}
void rotate(int x)
{
int y = fa[x]; int kind;
if (ch[y][1] == x) kind = 1; else kind = 0;//1左旋0右旋
ch[y][kind] = ch[x][!kind];
fa[ch[y][kind]] = y;
fa[x] = fa[y];
fa[y] = x;
ch[x][!kind] = y;
if (rt[y] > 0) rt[y] = false,rt[x] = true;
else ch[fa[x]][ch[fa[x]][1]==y] = x;
pushup(y);
}
void splay(int x)
{
while (rt[x] == false)
{
int fa1 = fa[x]; int fa2 = fa[fa1];
if (rt[fa1] > 0) rotate(x);
else if ((ch[fa2][1] == fa1) == (ch[fa1][1] == x))
rotate(fa1),rotate(x);//同侧
else rotate(x),rotate(x);//异侧
}
pushup(x);
}
void Access(int x)
{
int y = 0;
while (x > 0)
{
splay(x);
rt[ch[x][1]] = true;//分裂出右子树
ch[x][1] = y; rt[ch[x][1]] = false;//前一棵树连到当前右子树
pushup(x);
y = x; x = fa[x];
}
}
void c_root(int x)
{
Access(x); splay(x);
}
void link(int x,int y)
{
c_root(x);
fa[ch[x][0]] = 0; rt[ch[x][0]] = 1;
ch[x][0] = 0; fa[x] = y; pushup(x);
}
int main()
{
scanf("%d",&n);
fo(i,1,n) rt[i] = true,size[i] = 1;
fo(i,1,n)
{
scanf("%d",&x);
if (i + x <= n) link(i,i+x);
}
scanf("%d",&m);
while (m--)
{
scanf("%d",&opt);
if (opt == 1) {scanf("%d",&x); x++; c_root(x); printf("%d\n",size[ch[x][0]]+1);}
if (opt == 2) {scanf("%d%d",&x,&y); x++; if (x+y>n) link(x,0); else link(x,x+y);}
}
return 0;
}