【BZOJ 3107】【CQOI 2013】二进制a+b

本文介绍了一种不依赖动态规划的构造方法来解决与三个整数a、b、c的二进制表示中1的数量相关的特定位运算问题。该方法根据不同情况分为三类进行处理,并给出了具体实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网上的写法都是dp,然后发现一个构造写法,太稳了ORZ
http://blog.csdn.net/PoPoQQQ/article/details/48006557
具体的证明可以看这个博客,我这里就只写构造方法了。

首先答案只和a、b、c二进制中1的数量有关,不妨设为x、y、z且x>=y。
分成三种情况(几种特殊情况也能包括进去):

1<=z<=y

0–0000–11111111–111111
0–1111–00000000–111111
1–0000–00000000–111110
从左到右分别有1位、y-z位、x-z位、z位。

res = 1 << (x + y - z);
res = res + (1 << z) - 2;

y<z<=x

0–11111–1111111–11111
0–00000–1111111–00000
1–00000–1111110–11111
从左到右分别有1位、x-z位、y位、z-y位。
实际上去掉最后z-y位就和上面的一模一样了。

res = 1 << x;
res = res + (((1 << y) - 2) << (z - y));
res = res + (1 << (z - y)) - 1;

x<z<=x+y

0–11111–11111111–0000
0–11111–00000000–1111
1–11110–11111111–1111
从左到右分别有1位、x+y-z位、z-y位、z-x位。

res = (1 << (z + 1)) - 1;
res = res - (1 << (z + z - x - y));

有两种情况是无解的:
1、z>x+y,这不废话么。。。
2、答案所需位数小于位数上限,也就是说答案太长了放不下。

#include<cmath>
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define mod 1000000007
#define N 100000
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
int a,b,c,x,y,z,res,lim;
int calc(int x)
{
    int res = 0;
    while (x) {if (x&1) res++; x = x >> 1;}
    return res;
}
int dgt(int x)
{
    int res = 0;
    while (x) {res++; x = x >> 1;}
    return res;
}
int main()
{
    scanf("%d%d%d",&a,&b,&c);
    lim = max(dgt(a),max(dgt(b),dgt(c)));
    x = calc(a); y = calc(b); z = calc(c);
    if (x < y) swap(x,y);
    if (z <= y)
        {
            res = 1 << (x + y - z);
            res = res + (1 << z) - 2;
        } else
    if (z <= x)
        {
            res = 1 << x;
            res = res + (((1 << y) - 2) << (z - y));
            res = res + (1 << (z - y)) - 1;
        } else
    if (z <= x + y)
        {
            res = (1 << (z + 1)) - 1;
            res = res - (1 << (z + z - x - y));
        } else {printf("-1\n"); return 0;}
    if (dgt(res) > lim) printf("-1\n"); else printf("%d\n",res);
    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值