【BZOJ 3107】【CQOI 2013】二进制a+b

网上的写法都是dp,然后发现一个构造写法,太稳了ORZ
http://blog.csdn.net/PoPoQQQ/article/details/48006557
具体的证明可以看这个博客,我这里就只写构造方法了。

首先答案只和a、b、c二进制中1的数量有关,不妨设为x、y、z且x>=y。
分成三种情况(几种特殊情况也能包括进去):

1<=z<=y

0–0000–11111111–111111
0–1111–00000000–111111
1–0000–00000000–111110
从左到右分别有1位、y-z位、x-z位、z位。

res = 1 << (x + y - z);
res = res + (1 << z) - 2;

y<z<=x

0–11111–1111111–11111
0–00000–1111111–00000
1–00000–1111110–11111
从左到右分别有1位、x-z位、y位、z-y位。
实际上去掉最后z-y位就和上面的一模一样了。

res = 1 << x;
res = res + (((1 << y) - 2) << (z - y));
res = res + (1 << (z - y)) - 1;

x<z<=x+y

0–11111–11111111–0000
0–11111–00000000–1111
1–11110–11111111–1111
从左到右分别有1位、x+y-z位、z-y位、z-x位。

res = (1 << (z + 1)) - 1;
res = res - (1 << (z + z - x - y));

有两种情况是无解的:
1、z>x+y,这不废话么。。。
2、答案所需位数小于位数上限,也就是说答案太长了放不下。

#include<cmath>
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define mod 1000000007
#define N 100000
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
int a,b,c,x,y,z,res,lim;
int calc(int x)
{
    int res = 0;
    while (x) {if (x&1) res++; x = x >> 1;}
    return res;
}
int dgt(int x)
{
    int res = 0;
    while (x) {res++; x = x >> 1;}
    return res;
}
int main()
{
    scanf("%d%d%d",&a,&b,&c);
    lim = max(dgt(a),max(dgt(b),dgt(c)));
    x = calc(a); y = calc(b); z = calc(c);
    if (x < y) swap(x,y);
    if (z <= y)
        {
            res = 1 << (x + y - z);
            res = res + (1 << z) - 2;
        } else
    if (z <= x)
        {
            res = 1 << x;
            res = res + (((1 << y) - 2) << (z - y));
            res = res + (1 << (z - y)) - 1;
        } else
    if (z <= x + y)
        {
            res = (1 << (z + 1)) - 1;
            res = res - (1 << (z + z - x - y));
        } else {printf("-1\n"); return 0;}
    if (dgt(res) > lim) printf("-1\n"); else printf("%d\n",res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值