【模板】线性基

TIPS

1ll警告

线性基插入
void insert(int rt,ll x)
{
    int i;
    fd(i,63,0)
    if (x & (1ll<<i))
        if (basis[rt][i] == 0)
        {
            basis[rt][i] = x;
            return;
        }   else x = x ^ basis[rt][i];
}
线性基查询
bool check(int rt,ll x)
{
    int i;
    fd(i,63,0)
    if (x & (1ll << i))
        if (basis[rt][i])
            x = x ^ basis[rt][i];
        else return false;
    return true;
}
线性基求交

假设有两个线性基 A , B A,B A,B,设一个新的线性基 X X X,一开始 X = A X=A X=A,然后不断插入 B B B的元素。对于 B i B_i Bi,如果它能被 X X X线性表示,那么将“ A A A中用来组成 B i B_i Bi的元素”加入答案线性基,否则将这个线性基加入 X X X。(也就是说 X X X中的元素不但要记录值,还要记录由 A A A贡献的部分)

void cross(int a,int b,int c)
{
    int i,j; ll u,k;
    ll x[100],y[100];
    fo(i,0,63) x[i] = y[i] = basis[a][i];
    fo(i,0,63) c[i] = 0;
    fo(i,0,63)
    if (basis[b][i])
    {
        u = basis[b][i]; k = 0;
        fd(j,63,0)
        if (u & (1ll<<j))
            if (x[j])
            {
                u = u ^ x[j];
                k = k ^ y[j];
            }   else
            {
                x[j] = u;
                y[j] = k;
                break;
            }
        if (u == 0) insert(c,k);
    }
}
线性基求并

暴力将线性基 B B B中的每一个数插入到线性基 A A A
实际上就是调用若干次insert操作

void merge(int a,int b,int c)
{
	int i;
	fo(i,0,63) c[i] = a[i];
	fd(i,63,0) if (basis[b][i]) insert(c,basis[b][i]);
}
查询一个数是否存在

和插入操作类似,最后异或结果为0表示存在

bool exist(int rt,ll x)
{
    int i;
    fd(i,63,0)
    if (x & (1ll<<i))
        if (basis[rt][i] == 0)
        {
        	return false;
		}	else
		{
			x = x ^ basis[rt][i];
		}
	if (x == 0) return true; else return false;
}
查询最大值

从高位往低位组合,如果能使值更大就就异或

ll maximum(int rt)
{
    int i; ll x = 0;
    fd(i,63,0)
    if ((x ^ basis[rt][i]) > x) x = x ^ basis[rt][i];
    return x;
}
查询最小值

直接取出线性基内最小的元素就好了

ll minimum(int rt)
{
    int i;
    fo(i,0,63) if (basis[rt][i]) return basis[rt][i];
}
查询k小值

首先通过类似高斯消元的方法使得每列只有一个1(也就是把所有可以消掉的1消掉)
然后把k分解二进制,从线性基中从小到大按位取出即可
注意判断0是否可行(不取产生0/组合产生0)

int trans(int rt)
{
	int i,j;
	fo(i,0,63)
		fd(j,i-1,0)
			if (basis[rt][i] & (1<<j)) basis[rt][i] = basis[rt][i] ^ basis[rt][j];
	int num = 0;
	fo(i,0,63) if (basis[rt][i]) num++;
	return num;
}
ll get_kth(int rt,ll k)
{
	int i;
	ll x = 0;
	fo(i,0,63)
	if (basis[rt][i])
	{
		if (k&1) x ^= basis[rt][i];
		k = k / 2;
	}
	if (k > 0) return -1; else return x;
}
/*.........*/
main
{
	num = trans(1);
	if (num != n) k--; //num==n时表示无法组合出0
	ans = get_kth(1,k);
}
线性可以用来判断原集合是否封闭。如果一个元素能够被线性向量线性表示,那么它就可以由原集合中的元素经过线性组合得到,即原集合是封闭的。否则,如果有一个元素不能被线性向量线性表示,那么它就无法由原集合中的元素经过线性组合得到,即原集合不是封闭的。 具体地,我们可以通过将待判断的元素与线性向量进行异或操作来判断是否能够线性表示。如果待判断元素与线性向量进行异或操作后得到零向量,则说明待判断元素可以由线性向量线性表示。如果待判断元素与线性向量进行异或操作后得到非零向量,则说明待判断元素无法由线性向量线性表示。 因此,我们可以通过判断待判断元素与线性向量进行异或操作的结果是否为零向量来判断原集合是否封闭。如果待判断元素与线性向量进行异或操作后都得到零向量,则原集合是封闭的;否则,原集合不是封闭的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [线性模板](https://blog.csdn.net/weixin_43519854/article/details/96977900)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [【矩阵论】线性空间与线性变换(3)(4)](https://blog.csdn.net/kodoshinichi/article/details/108916238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值