“芬兰数学家因卡拉,花费3个月时间设计出了世界上迄今难度最大的数独游戏,而且它只有一个答案。因卡拉说只有思考能力最快、头脑最聪明的人才能破解这个游戏。”这是英国《每日邮报》2012年6月30日的一篇报道。这个号称“世界最难数独”的“超级游戏”,却被扬州一位69岁的农民花三天时间解了出来。
看到这个新闻后,我激动不已,证明我们OI的实力的机会来了,我们虽然不是思考能力最快、头脑最聪明的人,但是我们可以保证在1s之内解题。
好了废话不多说了……
数独是一种填数字游戏,英文名叫Sudoku,起源于瑞士,上世纪70年代由美国一家数学逻辑游戏杂志首先发表,名为Number Place,后在日本流行,1984年将Sudoku命名为数独,即“独立的数字”的省略,解释为每个方格都填上一个个位数。2004年,曾任中国香港高等法院法官的高乐德(Wayne Gould)把这款游戏带到英国,成为英国流行的数学智力拼图游戏。
玩家需要根据9×9盘面上的已知数字,推理出所有剩余位置(数据表示为数字0)的数字,并满足每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。
现在给你一个数独,请你解答出来。每个数独保证有解且只有一个。
9行9列。
每个数字用空格隔开。0代表要填的数
行末没有空格,末尾没有回车。
输出答案。
排成9行9列。
行末没有空格,结尾可以有回车。
所以这道题最难的地方我觉得其实是不好存数据,我用了small[maxn][maxn];//第i个小格里数字j的剩余个数,
hang[maxn][maxn];//第i行数字j的剩余个数,lie[maxn][maxn];//第i列数字j的剩余个数,begin[maxn][maxn];//题中给的剩余数独 , belong[maxn][maxn];//每一个坐标属于的位置 ,接着再手动写下了每一个小粗线宫x,y的范围,这样很多查找都变成了o(1)。枚举的时候就直接暴力枚举,每一个没有数值点的可能性,由于只用输出一种情况,所以当搜到9,9这个状态时直接输出就可以了。
下附AC代码。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#define maxn 20
using namespace std;
int small[maxn][maxn];//第i个小格里数字j的剩余个数
int hang[maxn][maxn];//第i行数字j的剩余个数
int lie[maxn][maxn];//第i列数字j的剩余个数
int begin[maxn][maxn];//题中给的剩余数独
int belong[maxn][maxn];//每一个坐标属于的位置
void init()
{
for(int i=1;i<=15;i++)
for(int j=1;j<=15;j++)
{
small[i][j]=1;
hang[i][j]=1;
lie[i][j]=1;
begin[i][j]=1;
if(1<=i&&i<=3 && 1<=j && j<=3)
belong[i][j]=1;
if(1<=i&&i<=3 && 4<=j && j<=6)
belong[i][j]=2;
if(1<=i&&i<=3 && 7<=j && j<=9)
belong[i][j]=3;
if(4<=i&&i<=6 && 1<=j && j<=3)
belong[i][j]=4;
if(4<=i&&i<=6 && 4<=j && j<=6)
belong[i][j]=5;
if(4<=i&&i<=6 && 7<=j && j<=9)
belong[i][j]=6;
if(7<=i&&i<=9 && 1<=j && j<=3)
belong[i][j]=7;
if(7<=i&&i<=9 && 4<=j && j<=6)
belong[i][j]=8;
if(7<=i&&i<=9 && 7<=j && j<=9)
belong[i][j]=9;
}
}
void out()
{
for(int i=1;i<=9;i++)
{
for(int j=1;j<=9;j++)
{
if(j==9)
cout<<begin[i][j]<<endl;
else
cout<<begin[i][j]<<" ";
}
}
}
void dfs(int x,int y)
{
if(begin[x][y])
{
if(x==9&&y==9)
{
out();
exit(0);
}
if(y==9)
{
dfs(x+1,1);
}
else
{
dfs(x,y+1);
}
}
if(begin[x][y]==0)
{
for(int i=1;i<=9;i++)
if(hang[x][i]==1 && lie[y][i]==1 && small[belong[x][y]][i]==1)
{
begin[x][y]=i;
hang[x][i]=0;
lie[y][i]=0;
small[belong[x][y]][i]=0;
if(x==9&&y==9)
{
out();
exit(0);
}
if(y==9)
{
dfs(x+1,1);
}
else
{
dfs(x,y+1);
}
begin[x][y]=0;
hang[x][i]=1;
lie[y][i]=1;
small[belong[x][y]][i]=1;
}
}
}
int main()
{
init();
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
{
cin>>begin[i][j];
if(begin[i][j])
{
hang[i][begin[i][j]]=0;
lie[j][begin[i][j]]=0;
small[belong[i][j]][begin[i][j]]=0;
}
}
dfs(1,1);
}