bzoj 1652: Treats for the Cows 区间dp

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
  天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖 出更高的价钱.
  •每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
  •第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
  Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并 希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

Input

* Line 1: A single integer,

N * Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

* Line 1: The maximum revenue FJ can achieve by selling the treats


       艾教讲的DFS转移区间dp大法好!

       首先考虑状态,对于一个区间l,r它的最优答案肯定是唯一的,所以我们就拿dp[l][r]表示左边考虑到l,右边考虑到r的最优解。

       接着考虑转移,对一般的区间dp来说,我们都是可以用dfs+记忆化进行区间dp的,这道题也属于其一。我们用使用dfs(l,r) 表示左端点考虑到l,有端点考虑到r的最优解。那么由于只能从左边或者右边取一个,那么可以得到当前dfs(l,r)的答案就是,

       max(dfs(l+1,r)+a[l]*(n-r+l),dfs(l,r-1)+a[r]*(n-r+l))

       即取右端点的那一个或者取左端点的那一个,由于现在考虑的区间的长度我们知道了,这次是第几次取也便是n-区间长度了。

       来考虑边界条件,如果这个区间长度为1,即最后一次取了,那么它的答案就是a[now]*n。我们要求的是取完的答案,所以答案即为dfs(1,n)。

       最后对于同样的区间答案肯定是不会再更新了,所以用数组dp[l][r]记录每个点的最优解,如果再次计算直接返回值即可。负责度即为n^2即可AC。

       下附AC代码。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define maxn 2005
using namespace std;
typedef long long ll;
ll n;
ll a[maxn];
ll dp[maxn][maxn];
ll dfs(ll l,ll r)
{
	if(l>r)			return 0;
	if(dp[l][r]!=0) return dp[l][r];
	if(l==r)		return (dp[l][r]=(a[l]*(n)));
	ll ans=max(dfs(l+1,r)+a[l]*(n-r+l),dfs(l,r-1)+a[r]*(n-r+l));
	return dp[l][r]=ans;
}
int main()
{
	scanf("%lld",&n);
	for(int i=1;i<=n;i++)
	scanf("%lld",&a[i]);
	printf("%lld\n",dfs(1,n));
}


相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页