bzoj 1652: Treats for the Cows 区间dp

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

•零食按照1．．N编号，它们被排成一列放在一个很长的盒子里．盒子的两端都有开口，约翰每
天可以从盒子的任一端取出最外面的一个．
•与美酒与好吃的奶酪相似，这些零食储存得越久就越好吃．当然，这样约翰就可以把它们卖 出更高的价钱．
•每份零食的初始价值不一定相同．约翰进货时，第i份零食的初始价值为Vi(1≤Vi≤1000)．
•第i份零食如果在被买进后的第a天出售，则它的售价是vi×a．
Vi的是从盒子顶端往下的第i份零食的初始价值．约翰告诉了你所有零食的初始价值，并 希望你能帮他计算一下，在这些零食全被卖出后，他最多能得到多少钱．

Input

* Line 1: A single integer,

N * Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

* Line 1: The maximum revenue FJ can achieve by selling the treats

艾教讲的DFS转移区间dp大法好！

首先考虑状态，对于一个区间l,r它的最优答案肯定是唯一的，所以我们就拿dp[l][r]表示左边考虑到l，右边考虑到r的最优解。

接着考虑转移，对一般的区间dp来说，我们都是可以用dfs+记忆化进行区间dp的，这道题也属于其一。我们用使用dfs(l,r) 表示左端点考虑到l，有端点考虑到r的最优解。那么由于只能从左边或者右边取一个，那么可以得到当前dfs(l,r)的答案就是，

max(dfs(l+1,r)+a[l]*(n-r+l),dfs(l,r-1)+a[r]*(n-r+l))

即取右端点的那一个或者取左端点的那一个，由于现在考虑的区间的长度我们知道了，这次是第几次取也便是n-区间长度了。

来考虑边界条件，如果这个区间长度为1，即最后一次取了，那么它的答案就是a[now]*n。我们要求的是取完的答案，所以答案即为dfs(1,n)。

最后对于同样的区间答案肯定是不会再更新了，所以用数组dp[l][r]记录每个点的最优解，如果再次计算直接返回值即可。负责度即为n^2即可AC。

下附AC代码。

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define maxn 2005
using namespace std;
typedef long long ll;
ll n;
ll a[maxn];
ll dp[maxn][maxn];
ll dfs(ll l,ll r)
{
if(l>r)			return 0;
if(dp[l][r]!=0) return dp[l][r];
if(l==r)		return (dp[l][r]=(a[l]*(n)));
ll ans=max(dfs(l+1,r)+a[l]*(n-r+l),dfs(l,r-1)+a[r]*(n-r+l));
return dp[l][r]=ans;
}
int main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
printf("%lld\n",dfs(1,n));
}

03-25 158
09-28
08-11 222