【高中数学/基本不等式】若正数a,b满足a>b,且1/(a+b)+1/(a-b)=1,则3a+2b的最小值是?

【问题】

若正数a,b满足a>b,且1/(a+b)+1/(a-b)=1,则3a+2b的最小值是?

【来源】

《解题卡壳怎么办 高中数学解题智慧点剖析》P38 余继光 苏德矿合著 浙江大学出版社出版

【如何破题】

1/(a+b)+1/(a-b)=1这个关系式挺复杂,展开后更乱(用三角函数也帮不上忙),而3a+2b这个表达式相对简单;

如果想让两者相乘,可以用配方的手段,得出的结果一部分能约成实数,一部分可以利用基本不等式;

题设里a>b暗示了a-b是正数,不违反基本不等式的条件。

【解答】

3a+2b=2(a+b)+a=2(a+b)+[(a+b)+(a-b)]/2=2.5*(a+b)+0.5*(a-b)

[2.5*(a+b)+0.5*(a-b) ]* 1=[2.5*(a+b)+0.5*(a-b) ]*[1/(a+b)+1/(a-b)]=2.5+2.5*(a+b)/(a-b)+0.5*(a-b)/(a+b)+0.5

到这里就能发现可以用基本不等式了。

上式=3+2.5*(a+b)/(a-b)+0.5*(a-b)/(a+b)>=3+2*根号下(2.5*0.5)=3+根号5≈5.236

END

  • 7
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 根据均值不等式(AM-GM不等式),有: $$\frac{(b+2)^2}{a}+\frac{(a+2)^2}{b} \geqslant 2\sqrt{\frac{(b+2)^2}{a} \cdot \frac{(a+2)^2}{b}}$$ 又因为: $$(b+2)^2 = (b+1)^2 + 4(b+1) + 4 \geqslant 4\sqrt[4]{(b+1)^2 \cdot 4(b+1) \cdot 4} = 8\sqrt[4]{2}(b+1)$$ $$(a+2)^2 = (a+1)^2 + 4(a+1) + 4 \geqslant 4\sqrt[4]{(a+1)^2 \cdot 4(a+1) \cdot 4} = 8\sqrt[4]{2}(a+1)$$ 因此: $$\frac{(b+2)^2}{a}+\frac{(a+2)^2}{b} \geqslant 2\sqrt{\frac{(b+2)^2}{a} \cdot \frac{(a+2)^2}{b}} \geqslant 2\sqrt{8\sqrt[4]{2}(a+1) \cdot 8\sqrt[4]{2}(b+1)} = 32\sqrt[4]{2}$$ 当且仅当 $\frac{(b+2)^2}{a} = \frac{(a+2)^2}{b}$ 时,等号成立,此时有 $a=b=2\sqrt[4]{2}-1$。 因此,原式的最小值为 $32\sqrt[4]{2}$。 ### 回答2: 要求解一个表达式的最小值,可以考虑使用一些数学方法来求解,如求导等。对于给定的表达式,我们可以使用简单的代数运算来进行化简。将分式扩展为乘法,并把指数表达式按照指数的乘法法则进行展开,化简为如下形式: (b^2)^2 * (a^2)^2 = b^4 * a^4 (a^2)^2 * (b^2)^2 = a^4 * b^4 要求解 b^4 * a^4 / a^4 * b^4的最小值,由于a和b都是大于0的正数,所以a^4和 b^4都大于0。分子和分母互相抵消,最终得到的结果为1。 所以,(b^2)^2/a * (a^2)^2/b 的最小值为1。 ### 回答3: 首先,我们对给定的表达式进行化简: (b^2)^2/a * (a^2)^2/b = b^4/a * a^4/b = a^4 * b^4 / (a * b) = a^(4-1) * b^(4-1) = a^3 * b^3。 由于a和b都是大于0的正数,所以它们的乘积a^3 * b^3也必定是大于0的。 因此,当a>0并且b>0时,表达式(a^3 * b^3)的最小值就是0。 简而言之,所给表达式的最小值为0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值