【人脸识别】CurricularFace:自适应课程学习人脸识别损失函数

CurricularFace是一种新的深度人脸识别损失函数,它结合了课程学习理念,解决了基于间隔和难样本挖掘方法的不足。该方法在训练初期重视易样本,后期聚焦难样本,通过动态调整样本重要性促进模型收敛和性能提升。相比于ArcFace和MV-softmax,CurricularFace表现出更好的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:《CurricularFace: Adaptive Curriculum Learning Loss for Deep Face Recognition》
论文地址:https://arxiv.org/pdf/2004.00288v1.pdf
代码地址:https://github.com/HuangYG123/CurricularFace

建议先了解下这篇文章:MV-softmax

1.背景

       人脸识别中常用损失函数主要包括两类,基于间隔和难样本挖掘,这两种方法损失函数的训练策略都存在缺陷。前一种方法是对所有样本都采用一个固定的间隔值,没有充分利用每个样本自身的难易信息,这可能导致在使用大边际时出现收敛问题;后一种方法则在整个网络训练周期都强调难样本,可能出现网络无法收敛问题。在本论文中,提出了一种新的自适应课程学习损失函数,称为CurricularFace,它能够很好地解决上述两类损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值