深度学习中的”卷积“是个怎么都绕不过去的话题,在此记录一下卷积相关的知识点,以供复习:
一切要回归基础与本质。
角度一:信号角度
角度二:图像处理角度
1. 信号处理
1.基本概念
1.1 时域和频域
- 时域和频域的概念
时域:时域是真实世界,是惟一实际存在的域。
频域:频域是一个遵循特定规则的数学范畴,频域也被一些学者称为上帝视角。
以信号为例,信号在时域下的图形可以显示信号如何随着时间变化,而信号在频域下的图形(一般称为频谱)可以显示信号分布在哪些频率及其比例。频域的表示法除了有各个频率下的大小外,也会有各个频率的相位,利用大小及相位的资讯可以将各频率的弦波给予不同的大小及相位,相加以后可以还原成原始的信号。
- 时域和频域的关系
时域分析与频域分析是对模拟信号的两个观察面。时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。
- 时域和频域的转换
动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数&#x