大模型方向有哪些具体岗位?一文带你了解!

如今大模型技术越来越火,很多人都想进入这个领域找份好工作。但大模型方向的岗位五花八门,不少人都看得一头雾水。别担心!今天就用大白话,带你认识大模型方向的具体岗位,看看哪个适合你!

请添加图片描述

一、搞研发、搭框架的 “大模型建筑师”

大模型研发工程师

请添加图片描述

大模型研发工程师就像是大模型世界的 “总设计师” 和 “施工队长”,他们的工作贯穿大模型研发的整个流程。从一开始设计大模型的整体方案,到处理数据、设计算法模型,再到开发、训练、部署、调试和评测模型,每一步都需要他们亲自操刀。比如在数字孪生政务场景中,他们要设计能理解政策、回答群众问题的大模型架构,开发支持空间语境识别的功能,还要搭建反馈学习机制,让模型越用越聪明。想干这行,得熟悉 TensorFlow、PyTorch 这些深度学习框架,懂知识图谱和数据建模,还要掌握 prompt engineering、LoRA 等技术,能把业务需求变成模型可以理解的 “语言”。

招聘要求:通常需要计算机、数学、统计学等相关专业本科及以上学历;熟练掌握至少一种编程语言,如 Python;有扎实的机器学习、深度学习理论基础;熟悉主流深度学习框架,有大模型开发、优化经验者优先;具备良好的问题解决能力和团队协作能力 。

机器学习平台研发工程师

请添加图片描述
这个岗位专注于大模型工程技术,就像是搭建 “模型工厂” 的工人。他们要研究最前沿的机器学习、自然语言处理等技术,让大模型训练得又快又好。他们会开发各种工具和框架,把主流大模型整合到平台里,方便团队使用。比如给模型训练提供高性能计算支持,开发模型微调工具等。这个岗位要求熟悉深度学习框架,理解算法原理,还得有把技术落地到实际业务中的能力。

招聘要求:计算机相关专业本科及以上学历;熟悉 Linux 环境,熟练使用 C++、Python 等编程语言;深入理解机器学习、深度学习算法;有分布式系统、云计算相关经验;对技术有热情,具备快速学习和创新能力。

二、玩算法、解难题的 “技术高手”

大模型算法专家

请添加图片描述

大模型算法专家是算法界的 “大神”,他们不仅要参与大模型研发,还得推动模型在实际业务里发挥作用。比如把大语言模型优化后用到智能电销里,让机器客服更好地和客户沟通。他们还要探索新技术,把好的算法经验沉淀下来,写成专利和论文,在行业里分享自己的成果。一般需要硕士以上学历,有多年机器学习、深度学习相关经验,熟悉前沿算法,最好在顶尖学术会议上发表过论文。

招聘要求:计算机、数学等相关专业博士学历优先,硕士学历需有 5 年以上相关工作经验;精通深度学习算法,熟悉 Transformer、Diffusion 等模型架构;有大模型开发、优化成功案例;具备良好的学术研究能力和技术创新能力;有团队管理经验者更佳。

算法工程师

请添加图片描述

算法工程师是解决实际问题的 “小能手”。不管是金融行业防诈骗,还是电商给你推荐喜欢的商品,都有他们的功劳。他们的工作就是把书本上的算法,变成能在电脑上跑起来的程序。这需要扎实的数学基础,会分析问题,能根据不同需求选对算法,还得会调试和优化算法,让它在实际场景里高效运行。

招聘要求:计算机、数学等相关专业本科及以上学历;熟练掌握线性代数、概率论等数学知识;精通 Python 编程,熟悉至少一种机器学习库;有算法开发、优化经验;有良好的逻辑思维和沟通能力。

三、和数据打交道的 “宝藏猎人”

数据科学家

数据科学家就像在数据海洋里寻宝的人。他们要用大模型分析数据,预测未来趋势,给公司决策提供依据。工作内容包括清洗杂乱的数据,从数据里提取有用的信息,训练模型找到数据规律,最后还要把模型结果解释清楚,让领导和同事都能听懂。比如分析用户购物数据,预测哪些商品会热卖;分析市场数据,给公司制定营销策略。这个岗位要求有多年工作经验,熟悉 AI 和统计知识,会用 Python、SQL 处理数据,还要有扎实的机器学习建模能力。

招聘要求:统计学、计算机等相关专业硕士及以上学历;熟练使用 Python、R 等数据分析工具,精通 SQL;有数据清洗、特征工程、模型训练经验;熟悉常见机器学习、深度学习算法;具备良好的数据分析和业务理解能力,能将数据转化为业务决策建议。

四、管产品、促落地的 “协调员”

AI 产品经理

请添加图片描述

AI 产品经理是连接技术和市场的 “桥梁”。他们要去了解市场上需要什么样的 AI 产品,比如设计一款智能音箱,就得先研究用户喜欢什么功能。然后制定产品规划,协调技术团队开发,把控项目进度,确保产品按时上线。他们既要懂技术,能和工程师沟通,又要懂市场,能抓住用户需求,是个综合性很强的岗位。

招聘要求:本科及以上学历,计算机、市场营销等相关专业优先;有 2 年以上产品经理工作经验,有 AI 产品经验者优先;熟悉 AI 技术基础知识,了解机器学习、大模型基本原理;具备良好的市场调研、需求分析能力;有优秀的沟通协调和项目管理能力。

五、专注深度学习的 “模型大师”

深度学习工程师

请添加图片描述

深度学习工程师专注于研究深度神经网络,是处理图像、视频、音频数据的 “专家”。比如开发能识别道路和障碍物的自动驾驶模型,或者能实现语音唤醒的智能语音助手。他们得精通 CNN、RNN、GAN 这些深度学习模型,有处理大量数据的经验,熟练使用深度学习框架,还要懂 GPU 加速和模型优化技巧,让模型又快又准。

招聘要求:计算机、电子信息等相关专业本科及以上学历;精通 Python 编程,熟悉 TensorFlow、PyTorch 等深度学习框架;深入理解 CNN、RNN 等深度学习模型;有图像、语音等数据处理项目经验;具备良好的代码编写和调试能力,对技术有钻研精神。

六、不同领域特色大模型岗位

医疗大模型研发专员

在医疗领域,大模型可以辅助疾病诊断、药物研发等。医疗大模型研发专员就像是 “医疗技术革新者”,他们要结合医学知识和大模型技术,开发能读懂病历、分析医学影像、预测疾病发展的模型。比如研发出的模型能从患者的 CT 影像中识别出早期肺癌的特征,帮助医生更准确地诊断疾病;或者在药物研发过程中,利用模型预测药物分子的活性,加速新药研发进程。

招聘要求:医学、计算机相关专业本科及以上学历,有医学和计算机交叉背景优先;熟悉医疗数据结构,了解常见疾病诊断标准;掌握深度学习框架,有医学图像处理、自然语言处理项目经验;具备良好的医学伦理意识,能严谨对待医疗数据。

教育大模型内容设计师

教育大模型内容设计师是 “个性化学习方案的创造者”。他们要根据不同年龄段、不同学习水平的学生特点,利用大模型设计出个性化的学习内容和课程。比如针对数学薄弱的小学生,设计出有趣又有效的数学练习题和讲解视频;为准备高考的学生,生成精准的知识点总结和模拟试卷。此外,还得通过大模型分析学生的学习数据,了解学生的学习进度和难点,及时调整学习内容。

招聘要求:教育学、计算机相关专业本科及以上学历;熟悉教育理论和课程设计方法;了解大模型在教育领域的应用,有一定的数据分析能力;有教学经验或教育产品设计经验者优先;具备创新思维,能设计出有趣、有效的学习内容。

金融大模型风险评估师

金融大模型风险评估师如同 “金融安全卫士”,主要利用大模型对金融市场的风险进行评估和预测。比如分析企业的财务数据、信用记录,预测企业的违约风险;研究股票、债券市场的历史数据,预测市场波动风险。他们还需要根据市场变化,不断优化风险评估模型,为金融机构的投资决策、贷款审批等提供可靠依据。

招聘要求:金融、数学、统计学、计算机等相关专业本科及以上学历;熟悉金融市场运作和金融产品;精通数据分析和机器学习算法,有金融风险评估项目经验;了解金融法规和监管要求;具备较强的逻辑分析能力和风险意识。

智能客服大模型优化师

智能客服大模型优化师就像 “智能客服的升级专家”。他们的工作是让智能客服更 “聪明”,能更好地理解用户的问题,给出准确、贴心的回答。比如优化智能客服模型,让它能识别用户不同的提问方式,即使问题表述模糊,也能理解用户需求;或者针对用户的投诉,通过模型分析快速找到解决方案。同时,还需要收集用户反馈,不断改进智能客服的服务质量。

招聘要求:计算机、自然语言处理相关专业本科及以上学历;熟悉自然语言处理技术和大模型原理;有文本分类、问答系统开发经验;具备良好的沟通能力和用户需求分析能力;有客服系统优化或相关项目经验者优先。

这些大模型方向的岗位各有特点,有的靠技术吃饭,有的需要沟通协调能力,还有的要在数据里 “挖宝”。如果你对大模型感兴趣,不妨对照这些岗位要求,看看自己适合哪一个,然后朝着目标努力,说不定下一个大模型领域的 “大佬” 就是你!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 软件研发类职位所需的专业技能 #### 编程语言 软件研发人员通常需要掌握多种编程语言,以便适应不同的项目需求和技术栈。常见的编程语言包括但不限于 Python[^1]、Java、C++ 和 JavaScript。Python 是一种通用型高级编程语言,因其简洁易读的语法而广受欢迎;它适用于数据分析、Web 开发以及人工智能等多个领域。 #### 框架 熟悉主流框架也是软件工程师的重要能力之一。对于 Web 开发而言,可以考虑学习 Flask 或 Django(基于 Python 的轻量级和全功能框架)。如果涉及前端开发,则 Vue.js、React 等现代 JavaScript 框架不可或缺。而在机器学习方向上,TensorFlow 和 Scikit-learn 提供了强大的工具支持来构建预测模型。 #### 数据结构与算法 理解并能够灵活运用基础的数据结构如数组、链表、堆栈、队列等至关重要。此外还需要深入研究更复杂的形式比如树形结构 (二叉搜索树, AVL 树),图论概念及其应用案例。关于算法方面,《如何实现LRU缓存》一文中提到通过组合使用哈希表(Hash Map)加双向链接列表(Doubly Linked List)的方式实现了最近最少使用的页面置换策略(LRU Cache)[^2]。这不仅展示了特定场景下的技术解决方案,同时也体现了良好的抽象思维能力和解决问题的能力。 #### 运维知识 随着 DevOps 文化的普及,在某些情况下开发者也需要具备一定的运维经验。这意味着要懂得配置管理工具Ansible/Puppet/Chef/Docker容器编排平台Kubernetes等等基础知识,并能有效监控系统性能指标从而快速定位故障原因恢复服务正常运行状态。 ```python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 加载鸢尾花数据集作为例子展示 scikit-learn 使用方法 iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.3, random_state=42) model = LogisticRegression(max_iter=200) model.fit(X_train, y_train) print(f'Accuracy on the test set: {model.score(X_test, y_test):.2f}') ``` 上述代码片段演示了一个简单的逻辑回归分类器训练过程,利用到了 NumPy 处理数值计算以及 Scikit-Learn 实现机器学习建模流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值