Numpy:numpy.append 以及与 numpy.concatente 的区别

问题

报错:AttributeError: 'numpy.ndarray' object has no attribute 'append'

解决

列表中用 append 直接添加元素,但是 numpy 数组需要使用 numpy.append(arr,values,axis=None)

其中有两点需要注意,举例说明:
目标:在下面的数组中增加一行 「255, 255, 255】

[[100  88  77]
 [126 123 116]
 [ 31  27  23]
 [181 174 163]
 [219 213 210]]

代码:

import numpy as np

lst =[[100, 88, 77],
      [126, 123, 116],
      [31, 27, 23],
      [181, 174, 163],
      [219, 213, 210]]

value2append = [255, 255, 255]

print(f"lst:\n{lst}")
print()

lst2array = np.array(lst)
print(f"lst2array:\n{lst2array}")
print()

错误 1

## 错误 1

new_array = np.append(lst2array, value2append)
print(f"new_array:\n{new_array}")

得到的结果是:[100 88 77 126 123 116 31 27 23 181 174 163 219 213 210 255 255 255],结果被压缩为一维数组了!

lst:
[[100, 88, 77], [126, 123, 116], [31, 27, 23], [181, 174, 163], [219, 213, 210]]

lst2array:
[[100  88  77]
 [126 123 116]
 [ 31  27  23]
 [181 174 163]
 [219 213 210]]

new_array:
[100  88  77 126 123 116  31  27  23 181 174 163 219 213 210 255 255 255]

错误 2

value2append = np.array(value2append).reshape(-1, 3)
print(f"value2append:\n{value2append}")
print()
new_array = np.append(lst2array, value2append)
print(f"new_array:\n{new_array}")

虽然将 待添加的数组改为了与原数组一样的 shape,但是结果依旧有问题:[100 88 77 126 123 116 31 27 23 181 174 163 219 213 210 255 255 255]

正解

## 正解
value2append = np.array(value2append).reshape(-1, 3)
print(f"value2append:\n{value2append}")
print()
new_array = np.append(lst2array, value2append, axis=0)
print(f"new_array:\n{new_array}")

得到结果:

new_array:
[[100  88  77]
 [126 123 116]
 [ 31  27  23]
 [181 174 163]
 [219 213 210]
 [255 255 255]]

np.append 和 np.concatenate

## concatenate
import numpy as np
a = np.array([[1, 2, 3],
             [2, 2, 2]])
b1 = np.array([4, 5, 6])
b2 = np.array([[4, 5, 6]])

# c1 = np.concatenate((a, b1), 0)
c2 = np.concatenate((a, b2), 0)

d = np.append(a, b1)

# print(c1)   # 报错:ValueError: all the input arrays must have same number of dimensions
print(c2)
print()
print(d)
[[1 2 3]
 [2 2 2]
 [4 5 6]]

[1 2 3 2 2 2 4 5 6]

小结:
(1)np.append

  • 是在一个维度上新增一个元素
  • 待加入的数据需要在一个维度上满足 大小
  • 需要定义axis(axis=0表示“行”)
    (2)np.concatenate()
  • 是两个相同维度的向量进行拼接,除了 append()类似的要求,还需要有相同的维度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值