复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。
import numpy as np
import pandas as pd
text = pd.read_csv('/Users/chenandong/Documents/datawhale数据分析每个人题目设计/招募阶段/第二章项目集合/data/train-left-up.csv')
text.head()
| PassengerId | Survived | Pclass | Name |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry |
---|
2 第二章:数据重构(上)
2.4 数据的合并
2.4.1 任务一:将data文件夹里面的所有数据都载入,与之前的原始数据相比,观察他们的之间的关系
text_left_up = pd.read_csv("data/train-left-up.csv")
text_left_down = pd.read_csv("data/train-left-down.csv")
text_right_up = pd.read_csv("data/train-right-up.csv")
text_right_down = pd.read_csv("data/train-right-down.csv")
text_left_up.head()
| PassengerId | Survived | Pclass | Name |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry |
---|
text_left_down.head()
| PassengerId | Survived | Pclass | Name |
---|
0 | 440 | 0 | 2 | Kvillner, Mr. Johan Henrik Johannesson |
---|
1 | 441 | 1 | 2 | Hart, Mrs. Benjamin (Esther Ada Bloomfield) |
---|
2 | 442 | 0 | 3 | Hampe, Mr. Leon |
---|
3 | 443 | 0 | 3 | Petterson, Mr. Johan Emil |
---|
4 | 444 | 1 | 2 | Reynaldo, Ms. Encarnacion |
---|
text_right_down.head()
| Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | male | 31.0 | 0 | 0 | C.A. 18723 | 10.500 | NaN | S |
---|
1 | female | 45.0 | 1 | 1 | F.C.C. 13529 | 26.250 | NaN | S |
---|
2 | male | 20.0 | 0 | 0 | 345769 | 9.500 | NaN | S |
---|
3 | male | 25.0 | 1 | 0 | 347076 | 7.775 | NaN | S |
---|
4 | female | 28.0 | 0 | 0 | 230434 | 13.000 | NaN | S |
---|
text_right_up.head()
| Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
---|
4 | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S |
---|
【提示】结合之前我们加载的train.csv数据,大致预测一下上面的数据是什么
2.4.2:任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
list_up = [text_left_up,text_right_up]
result_up = pd.concat(list_up,axis=1)
result_up.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1.0 | 0.0 | 3.0 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2.0 | 1.0 | 1.0 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3.0 | 1.0 | 3.0 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4.0 | 1.0 | 1.0 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5.0 | 0.0 | 3.0 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S |
---|
2.4.3 任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。
list_down=[text_left_down,text_right_down]
result_down = pd.concat(list_down,axis=1)
result = pd.concat([result_up,result_down])
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1.0 | 0.0 | 3.0 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2.0 | 1.0 | 1.0 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3.0 | 1.0 | 3.0 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4.0 | 1.0 | 1.0 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5.0 | 0.0 | 3.0 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S |
---|
2.4.4 任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务
resul_up = text_left_up.join(text_right_up)
result_down = text_left_down.join(text_right_down)
result = result_up.append(result_down)
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1.0 | 0.0 | 3.0 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2.0 | 1.0 | 1.0 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3.0 | 1.0 | 3.0 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4.0 | 1.0 | 1.0 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5.0 | 0.0 | 3.0 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S |
---|
2.4.5 任务五:使用Panads的merge方法和DataFrame的append方法:完成任务二和任务三的任务
result_up = pd.merge(text_left_up,text_right_up,left_index=True,right_index=True)
result_down = pd.merge(text_left_down,text_right_down,left_index=True,right_index=True)
result = resul_up.append(result_down)
result.head()
| PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
---|
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S |
---|
【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在任务四和任务五的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成任务四和任务五呢?
2.4.6 任务六:完成的数据保存为result.csv
result.to_csv('result.csv')
2.5 换一种角度看数据
2.5.1 任务一:将我们的数据变为Series类型的数据
这个stack函数是干什么的?
text = pd.read_csv('result.csv')
text.head()
unit_result=text.stack().head(20)
unit_result.head()
0 Unnamed: 0 0
PassengerId 1
Survived 0
Pclass 3
Name Braund, Mr. Owen Harris
dtype: object
unit_result.to_csv('unit_result.csv')
test = pd.read_csv('unit_result.csv')
test.head()
| 0 | Unnamed: 0 | 0.1 |
---|
0 | 0 | PassengerId | 1 |
---|
1 | 0 | Survived | 0 |
---|
2 | 0 | Pclass | 3 |
---|
3 | 0 | Name | Braund, Mr. Owen Harris |
---|
4 | 0 | Sex | male |
---|
2 第二章:数据重构(下)
import numpy as np
import pandas as pd
text = pd.read_csv('result.csv')
text.head()
| Unnamed: 0 | PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked |
---|
0 | 0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1.0 | 0.0 | A/5 21171 | 7.2500 | NaN | S |
---|
1 | 1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1.0 | 0.0 | PC 17599 | 71.2833 | C85 | C |
---|
2 | 2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0.0 | 0.0 | STON/O2. 3101282 | 7.9250 | NaN | S |
---|
3 | 3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1.0 | 0.0 | 113803 | 53.1000 | C123 | S |
---|
4 | 4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0.0 | 0.0 | 373450 | 8.0500 | NaN | S |
---|
第一部分:数据聚合与运算
2.6 数据运用
2.6.1 任务一:通过《Python for Data Analysis》P303、Google or Baidu来学习了解GroupBy机制
在了解GroupBy机制之后,运用这个机制完成一系列的操作,来达到我们的目的。
下面通过几个任务来熟悉GroupBy机制。
2.6.2:任务二:计算泰坦尼克号男性与女性的平均票价
df = text['Fare'].groupby(text['Sex'])
means = df.mean()
means
Sex
female 44.479818
male 25.523893
Name: Fare, dtype: float64
2.6.3:任务三:统计泰坦尼克号中男女的存活人数
survived_sex = text['Survived'].groupby(text['Sex']).sum()
survived_sex.head()
Sex
female 233
male 109
Name: Survived, dtype: int64
2.6.4:任务四:计算客舱不同等级的存活人数
survived_pclass = text['Survived'].groupby(text['Pclass'])
survived_pclass.sum()
Pclass
1 136
2 87
3 119
Name: Survived, dtype: int64
【提示:】表中的存活那一栏,可以发现如果还活着记为1,死亡记为0
【思考:】从数据分析的角度,上面的统计结果可以得出那些结论
【思考】从任务二到任务四中,这些运算可以通过agg()函数来同时计算。并且可以使用rename函数修改列名。你可以按照提示写出这个过程吗?
df.groupby('Survived').agg({'Sex': 'mean', 'Pclass': 'count'}).rename(columns=
{'Sex': 'mean_sex', 'Pclass': 'count_pclass'})
2.6.5:任务五:统计在不同等级的票中的不同年龄的船票花费的平均值
text.groupby(['Pclass','Age'])['Fare'].mean().head()
Pclass Age
1 0.92 151.5500
2.00 151.5500
4.00 81.8583
11.00 120.0000
14.00 120.0000
Name: Fare, dtype: float64
2.6.6:任务六:将任务二和任务三的数据合并,并保存到sex_fare_survived.csv
result = pd.merge(means,survived_sex,on='Sex')
result
| Fare | Survived |
---|
Sex | | |
---|
female | 44.479818 | 233 |
---|
male | 25.523893 | 109 |
---|
result.to_csv('sex_fare_survived.csv')
2.6.7:任务七:得出不同年龄的总的存活人数,然后找出存活人数的最高的年龄,最后计算存活人数最高的存活率(存活人数/总人数)
survived_age = text['Survived'].groupby(text['Age']).sum()
survived_age.head()
Age
0.42 1
0.67 1
0.75 2
0.83 2
0.92 1
Name: Survived, dtype: int64
survived_age[survived_age.values==survived_age.max()]
Age
24.0 15
Name: Survived, dtype: int64
_sum = text['Survived'].sum()
print(_sum)
342
_sum = text['Survived'].sum()
print("sum of person:"+str(_sum))
precetn =survived_age.max()/_sum
print("最大存活率:"+str(precetn))
sum of person:342
最大存活率:0.043859649122807015