Python_使用Pillow(PIL)进行图像数据读取&&处理

本文介绍Pillow库的基础使用,包括图像读取、显示、复制、格式查询、尺寸获取、模式查看、转换为numpy数组、通道分离与合并、ROI区域裁剪等常见图像处理操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PIL即Python Imageing Library,而Pillow是PIL的一个分支。Pillow提供了常见的图像读取和处理的操作,它比opencv更为轻巧,而且可以与ipython notebook无缝集成。

使用Image.open()读取图片存储为一个对象,并非是numpy矩阵。

下面我们看看相关的代码操作:

from PIL import Image #导入PIL库
import numpy as np

img = Image.open('../xx.jpg') # 读取图片

imgL = Image.open('../xx.jpg').convert('L') # 读取图片灰度图

imgL.show() # 展示灰度图

img1 = img.copy() # 复制图片

print(img.format) # 输出图片格式

print(img.size) # 输出图片(宽度w,高度h)

print(img.mode) # 输出图片类型,L为灰度图,RGB为真彩色,RGBA为RGB+Alpha透明度

im.show()  # 展示画布

imgData = np.array(img) # 将对象img转化为RGB像素值矩阵

print(imgData.shape) # 输出图片(宽度w,高度h,通道c)

print(imgData.dtype) # 输出图片类型,uint8为[0-255]

print(imgData) # 输出所有像素的RGB值

imgN = Image.fromarray(imgData) # 将RGB像素值矩阵转化为对象imgN

imgN.save('xxx.jpg') # 储存为文件xxx.jpg

r ,g ,b = img.split() # 分离通道

img = Image.merge("RGB", (b, g, r)) # 合并通道

# ROI(region of interest),只对ROI区域操作
roi = img.crop((0, 0, 300, 300)) # (左上x,左上y,右下x,右下y)坐标

roi.show() # 展示ROI区域

#捕捉异IOError,为读取图片失败

try:
	img = Image.open('xxx.jpg')
except IOError:
	print('image failed to read')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rocky Ding*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值