【Paddle】实践作业——建立模型并测试100张图片

该博客介绍了如何利用飞桨(PaddlePaddle)的dataset.mnist API获取数据,训练并测试深度学习模型。作者遵循特定项目结构,测试了模型在100张随机抽取的MNIST图片上的分类准确率,同时讨论了增加测试样本数量以提高测试结果的可信性。
摘要由CSDN通过智能技术生成

课程中以1张图片为例,测试了预测效果,请从原始mnist数据集中,随机抽取出100张图片,测试下模型的分类准确率?

【作业内容】

✓代码跑通 请大家根据课上所学内容,补全代码,保证程序跑通。

【评分标准】

✓代码运行成功且有结果(打印100张图片的分类准确率),100分

感谢大佬的博客讲解

如果notebook的代码自动提示能力可以和本地的pycharm自动提示能力差不多就好了

1. 添加库文件

import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image

import gzip
import json

2.利用飞桨的dataset.mnist中的api 获取训练数据和测试数据

  • 首先获得训练数据和测试数据
  • 接着对训练数据和测试数据进行乱序操作
  • 最后对读取数据的reader进行装饰,得到批处理数据,batch_size = 100(方便测试时打印100张图片的分类准确度)
# 首先获得训练数据和测试数据
train_data = paddle.dataset.mnist.train()
test_data = paddle.dataset.mnist.test()

# 接着对训练数据和测试数据进行乱序操作,缓冲区大小设置为100
train_data = fluid.io.shuffle(train_data,100)
test_data = fluid.io.shuffle(test_data,100)

# 最后对读取数据的reader进行装饰,得到批处理数据,batch_size = 100(方便测试时打印100张图片的分类准确度
train_data = fluid.io.batch(train_data,100)
test_data = fluid.io.batch(test_data,100)

3. 按照项目9的网络定义不变

# 定义模型结构
class MNIST(fluid.dygraph.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         # 定义一个卷积层,使用relu激活函数
         self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义一个池化层,池化核为2,步长为2,使用最大池化方式
         self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
         # 定义一个卷积层,使用relu激活函数
         self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义一个池化层,池化核为2,步长为2,使用最大池化方式
         self.pool2 = Pool2D
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值