参考网址:https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
一.目标
在这篇指南中你将学会如何:
- 使用OpenCV 中的Sobel 算子计算图像中的导数。
- 使用OpenCV 中的Scharr 算子计算一个3*3大小的核的一个更精确的导数。
二.理论
说明:下面的解释说明来自由Bradski 和Kaehler写的《Learning OpenCV》
为什么计算图像中的衍生物的微积分十分重要?让我们想象如果我们想要检测到图像中出现的边缘,如下图:
你会发现在边缘处,像素点亮度出现显著的变化。使用导数能够很好的展现变化。梯度上的变化表现出图像中的较大的变化。
为了图示的更加清晰,假设我们有一个一维的图像,下面图表中亮度值的“跳跃”表现出边缘部分:
如果我们求第一次导数(事实上,图中表现为最大点),边缘部分的“跳跃”更能够表现出来。
所以,根据上述的解释说明,我们可以推导出一个在图像中检测边缘的方法,即通过确定一个梯度值大于领域中其他像素点(推广思路可改用阈值)的点的位置并表现在图像中。
更多的细节解释,可以参考Bradski 和Kaehler 的《Learning OpenCV》
Sobel 算子
- Sobel 算子是一个具体的差异化的算子。它用于计算图像中亮度梯度的估计值。
- Sobel 算子是将差异化和高斯滤波合并起来
处理
假设待处理的图像为I:
- 我们计算两个导数:
a.水平变化:通过计算I 与核 Gx 的卷积,其中 Gx 是一个具有奇数边长的核。比如对于一个3*3的核, Gx 可以像下面这样计算:
Gx = ∣∣∣∣−1−2−1000+1+2