【译】Sobel 算子文档

这篇指南介绍了如何利用OpenCV的Sobel和Scharr算子计算图像的导数,从而检测图像边缘。Sobel算子结合了差异化和高斯滤波,而Scharr算子在3x3核上提供更精确的导数估计。通过计算水平和垂直变化,然后取平方和的平方根,可以得到每个像素的梯度估计值,用于边缘检测。代码示例展示了如何应用这些算子,并显示处理结果。
摘要由CSDN通过智能技术生成

参考网址:https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html

一.目标
在这篇指南中你将学会如何:

  • 使用OpenCV 中的Sobel 算子计算图像中的导数。
  • 使用OpenCV 中的Scharr 算子计算一个3*3大小的核的一个更精确的导数。

二.理论
说明:下面的解释说明来自由Bradski 和Kaehler写的《Learning OpenCV》

为什么计算图像中的衍生物的微积分十分重要?让我们想象如果我们想要检测到图像中出现的边缘,如下图:
这里写图片描述

你会发现在边缘处,像素点亮度出现显著的变化。使用导数能够很好的展现变化。梯度上的变化表现出图像中的较大的变化。

为了图示的更加清晰,假设我们有一个一维的图像,下面图表中亮度值的“跳跃”表现出边缘部分:
这里写图片描述

如果我们求第一次导数(事实上,图中表现为最大点),边缘部分的“跳跃”更能够表现出来。
这里写图片描述

所以,根据上述的解释说明,我们可以推导出一个在图像中检测边缘的方法,即通过确定一个梯度值大于领域中其他像素点(推广思路可改用阈值)的点的位置并表现在图像中。

更多的细节解释,可以参考Bradski 和Kaehler 的《Learning OpenCV》

Sobel 算子

  1. Sobel 算子是一个具体的差异化的算子。它用于计算图像中亮度梯度的估计值。
  2. Sobel 算子是将差异化和高斯滤波合并起来

处理
假设待处理的图像为I:

  1. 我们计算两个导数:
    a.水平变化:通过计算I 与核 Gx 的卷积,其中 Gx 是一个具有奇数边长的核。比如对于一个3*3的核, Gx 可以像下面这样计算:
    Gx = 121000+1+2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值