前言
我们在进行基于SDM(Seed-based d maping)神经成像元分析时,会在预处理摘要,和最后的平均脑图中都看到上图所示的异质性指标。
那这几个指标分别是代表什么意思?如何计算得到的?我们又该如何使用呢?
研究间异质性(heterogeneity)指标的研究目的:
增加研究结果的深入性,可解释性,全面性和鲁棒性。
例如:主要分析检测到患者和对照之间的差异,那么可以通过异质性分析深入探讨这些差异是否取决于疾病的严重程度,或者是否与疾病的特殊亚型有关。
研究间异质性的来源:
- 一方面,纳入个体研究的患者可能来自临床上不同的人群;例如,一项针对重性抑郁障碍的研究可能包括有轻度反应性抑郁发作的门诊患者,而另一项研究则可能集中于患有严重内源性抑郁症并伴有忧郁症状的住院病人。
- 同样,不同研究中的患者可能正在接受不同的治疗,
- 另一方面,研究人员可能调查了一种相似的功能性但仍然不同的方面;例如,一项研究可能描述了血氧水平依赖( BOLD )大脑对涉及高记忆负荷的任务的反应,而另一项研究可能对与决策相关的任务的BOLD反应感兴趣。
- 或者,即使研究相同的特定认知功能,每个研究也可能采用特定的统计包,以及与之相关的大量假设。
- 最后,研究间的异质性可能存在相关部分,既不能与研究内的变异性相关,也不能由研究间的临床或方法学差异来解释。这被称为残余异质性。
目录
Q统计量
Q统计量基于每项研究的观察效应大小与总体加权平均效应大小之间的差异。
它衡量了观察到的效应大小与假设所有研究具有相同真实效应时的预期效应之间的总偏差。
在栗子中Q统计量=45.479,大于研究数量,说明研究间异质性较大。
每项研究的权重。
是每项研究的效应大小。
是加权后的平均效应大小。
τ (tau)
τ 是研究间标准差,用于量化真实效应大小的变异程度.
C是用来衡量研究权重分布趋势的系数,当权重集中于一项研究时,C为最小值0值;当权重越均匀分布,C越接近最大值wi。
在栗子中τ = 0.026 表示研究间的异质性相对较小,但仍存在一些变异。
如果:
(k为研究数量)
则:如果:
则:
df自由度
在回归分析中,自由度通常是 n-k-1,其中 n 是样本量,k 是预测变量的数量。
p与Q统计量相关的显著性
p<0.05说明研究间异质性显著。
I^2
如果在进行全面的Meta分析时,可以提取每个Cluster异质性。I^2 > 50 %,则认为各研究间表现出明显的异质性。
操作
SDM软件(介绍)中点击左边菜单工具箱中的Extract按钮,从主分析中选择一个峰,按OK。SDM - PSI会自动打开一个网页,并统计这个峰值。写出异质性I2统计量。