Description
有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。 若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj
是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的价值。 一个数字只能参与一次配对,可以不参与配对。 在获得的价值总和不小于 0
的前提下,求最多进行多少次配对。
Input
第一行一个整数 n。 第二行 n 个整数 a1、a2、……、an。 第三行 n 个整数 b1、b2、……、bn。 第四行 n 个整数
c1、c2、……、cn。
Output
一行一个数,最多进行多少次配对
Sample Input
3
2 4 8
2 200 7
-1 -2 1
Sample Output
4
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
题解
神题啊想了好久。。
这题跟在GDKOI里想的那道题一样,都是二分图转网络流的
在KOI想的就纠结到了一个点,就是假设1流向2,那么2被选中了,2又流向了3。这个怎么办
其实完全不用考虑这个。因为扩展了1到2,那么在当前图中1到2一定是最长边,那么到扩展下一个的时候2一定是扩展向1的,也就是1流向2的同时2也一定会流向1。那么最后费用流跑完除2就是答案了
如何判质数,把每个数分解因数
假设i能整除j且i的因数个数刚好比j的因数个数多1
那么i,j可以配对
讲一下建图,每个点i拆点u,v
st->u 流量b[i],费用0,v->ed 流量b[i],费用0
对于每对能配对的点,i.u->j.v 流量INF 费用c[i]*c[j],同时j.u->i.v,流量费用同理
如此跑最大费用最大流即可
对于一个SPFA的初始化开小了的傻逼超无奈
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long LL;
int Z[15]={0,2,3,5,7,11,13,17,19,23,29,31,37};
struct sc
{
int col;
int h;
sc(){h=0;}
}aa[210];
void get(int k)
{
int u=aa[k].col;
int t=int(double(sqrt(u+1)));
for(int j=2;j<=t;j++)
{
if(u%j==0)
{
while(u%j==0)u/=j,aa[k].h++;
}
}
if(u!=1)aa[k].h++;
}
struct node
{
LL d;
int x,y,c,next,other;
}a[410000];int len,last[2100];
void ins(int x,int y,int c,LL d)
{
int k1,k2;
k1=++len;
a[len].x=x;a[len].y=y;a[len].c=c;a[len].d=d;
a[len].next=last[x];last[x]=len;
k2=++len;
a[len].x=y;a[len].y=x;a[len].c=0;a[len].d=-d;
a[len].next=last[y];last[y]=len;
a[k1].other=k2;
a[k2].other=k1;
}
int list[1100],head,tail;
LL d[510];int st,ed,n;
bool v[510];
int pre[510],tmp[510];
bool spfa()
{
for(int i=1;i<=2*n+2;i++)d[i]=-99999999999;
d[st]=0;list[1]=st;
head=1;tail=2;
memset(v,false,sizeof(v));v[st]=true;
while(head!=tail)
{
int x=list[head];
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(d[y]<d[x]+a[k].d && a[k].c>0)
{
d[y]=d[x]+a[k].d;
pre[y]=x;tmp[y]=k;
if(v[y]==false)
{
v[y]=true;
list[tail++]=y;
if(tail==n*2+50)tail=1;
}
}
}
v[x]=false;
head++;if(head==n*2+50)head=1;
}
if(d[ed]==-99999999999)return false;
return true;
}
LL ans,cnt;
LL mcf()
{
ans=cnt=0;
int minn;
while(spfa())
{
int x=ed;minn=999999999;
while(x!=st)
{
minn=min(minn,a[tmp[x]].c);
x=pre[x];
}
if(cnt+(LL)minn*d[ed]>=0){cnt+=(LL)minn*d[ed];ans+=minn;}
else {ans+=cnt/(-d[ed]);break;}
x=ed;
while(x!=st)
{
a[tmp[x]].c-=minn;a[a[tmp[x]].other].c+=minn;
x=pre[x];
}
}
return ans;
}
int bb[210];
LL cc[210];
int main()
{
scanf("%d",&n);
st=n*2+1;ed=n*2+2;
for(int i=1;i<=n;i++)
{
scanf("%d",&aa[i].col);
get(i);
}
for(int i=1;i<=n;i++)scanf("%d",&bb[i]);
for(int i=1;i<=n;i++)scanf("%lld",&cc[i]);
len=0;memset(last,0,sizeof(last));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)if(i!=j && aa[i].col%aa[j].col==0)
{
if(aa[i].h-aa[j].h==1)
{
ins(i,j+n,999999999,cc[i]*cc[j]);
ins(j,i+n,999999999,cc[i]*cc[j]);
}
}
for(int i=1;i<=n;i++)ins(st,i,bb[i],0),ins(i+n,ed,bb[i],0);
printf("%lld\n",mcf()/2);
return 0;
}