- 博客(3)
- 收藏
- 关注
原创 【数模比赛必备:机器学习系列SVM分类模型——从线性决策边界到评估指标(附代码)】
本文聚焦支持向量机(SVM)二分类模型,介绍其核心原理与应用。SVM通过寻找最优超平面最大化分类间隔,优化目标为最小化模型复杂度。文中演示了线性决策边界构建流程,针对类别不平衡问题,通过设置`class_weight`参数为少数类赋予更高权重,调整决策边界以提升少数类分类效果。还详解了精确度、召回率、特异度等评估指标及ROC曲线的作用与解读方法,附可复现代码助力搭建SVC建模流程。
2025-05-18 10:10:56
1112
原创 【数模比赛必备:机器学习系列——SVR预测模型实战指南(附代码)】
本文介绍了支持向量回归(SVR)的完整建模流程,并以洪水概率预测为例,详细阐述了从数据预处理到模型评估的全过程。SVR凭借其在小样本、高维度数据中的优异表现,成为竞赛中的重要工具。文章首先简要介绍了SVR的核心原理,包括ε-不敏感带、核技巧和结构风险最小化。随后,通过实际案例展示了数据预处理、模型构建、模型评估等关键步骤,并提供了可复现的代码。本文旨在为读者提供一套完整的SVR建模解决方案,助力竞赛实战。
2025-05-13 09:46:41
1209
1
原创 【数模比赛必备:机器学习系列——XGBoost预测模型实战指南(附代码)】
本文聚焦数模比赛中XGBoost回归模型实战,涵盖环境配置、数据划分、3行核心代码训练预测、K折交叉验证及单参数学习曲线调优,提供糖尿病数据集完整可复现代码,助力新手快速掌握模型评估(R²、MSE)与调优技巧,规避复杂原理,直达实战提效。
2025-04-30 15:16:25
1077
空空如也
用yolo训练东北大学数据集且不用预训练参数精确度为 0.00133,正常吗
2025-01-20
为什么yolo11在训练模式下依然自动下载预训练参数文件
2025-01-19
TA创建的收藏夹 TA关注的收藏夹
TA关注的人