机器学习15-2(Mini Batch Kmeans)

本文介绍了Mini Batch K-Means和DBSCAN两种聚类算法。Mini Batch K-Means通过小批量数据更新中心点,提高了聚类速度,牺牲部分精度。DBSCAN基于密度划分数据,能处理非凸边界,通过eps和min_samples参数控制聚类效果。两种算法在实际应用中可以相互补充。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

  • 除了K-Means快速聚类意外,还有两种常用的聚类算法
    • 能够进一步提升快速聚类的速度的 Mini Batch K-Means 算法
    • 能够和K-Means快速聚类形成性能上互补的算法 DBSCAN 密度聚类

Mini Batch K-Means

  • 非常抱歉,需要先来一段理论基础做铺垫,速览即可!
  • 在 K-Means 的基础上增加了一个 Mini Batch 的抽样过程,每轮迭代中心点时,不再代入全部数据、而是代入抽样的Mini Batch进行计算
    • 第一轮先随机选出中心点,一般用 kmeans++ 选 ,更稳
    • 从数据集中随机抽取一些数据(batch_size),把他们分配给最近的质心
    • 根据小批量数据划分情况,更新质心
    • 停止迭代的条件也有所不同
  • 此处可以用梯度下降和小批量(Mini Batch)梯度下降之间的差异进行类比
    • 梯度下降过程中,我们代入全部数据构造损失函数,相当于代入全部数据进行参数的更新,就类似于K-Means 代入每个簇
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roy_Allen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值