离职分析、预测初探

该文介绍了一个利用员工信息和离职数据预测离职概率的分析过程。首先,通过预处理将数据转换为虚拟变量,如985/211学校、职级等。然后,使用决策树模型进行训练和测试,设置最大深度和最小样本叶节点限制以防止过拟合。最终,通过测试报告评估模型性能,并输出了决策树结构。
摘要由CSDN通过智能技术生成
该文章旨在利用现有人员信息以及离职数据进行预测,分析哪些人群更容易离职。

步骤如下:

1、导入相关的库、数据,并进行简单的数据处理

2、利用决策树训练、测试,输出测试结果

代码呈现

1、 导入相关的库、数据,并进行简单的数据处理

#导入相关的库、数据
import pandas as pd 
import numpy as np 
import os 
os.chdir('D:\\已发文\\汇总表格')
df=pd.read_excel('2015-2020入职人员信息.xlsx',encoding='gbk')
df.columns


#进行数据预处理

#1、将各特征变成虚拟变量
df['school_985']=df.apply(lambda x : 1 if x['学校类型']==985 else 0,axis=1)
df['school_211']=df.apply(lambda x : 1 if x['学校类型']==211 else 0,axis=1)
df['school_overseas']=df.apply(lambda x : 1 if x['学校类型']=='海外高校' else 0,axis=1)
df['school_guangdong']=df.apply(lambda x : 1 if x['学校类型']=='广东六所' else 0,axis=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值