图论的基础

本文详细介绍了图的基本概念,包括无向图、有向图、完全图、子图、带权图、连通性和强连通性,以及顶点的度数。还讲解了图的存储方式(邻接矩阵和邻接链表)和遍历方法(深度优先搜索和广度优先搜索),最后涉及欧拉路及其判断条件。
摘要由CSDN通过智能技术生成

目录

图的基本概念

图的存储

图的遍历

欧拉路——图的一笔画问题

作者最后的话


图的基本概念

(1)无向图:每条边都是没有方向的。

如图:


(2)有向图:每条边都是有方向的。

如图:


(3)完全图:任意两个顶点上都在一个边。

  • n个顶点的完全无向图有 n(n-1)/2 条边。
  • n个顶点的完全有向图有 n(n-1) 条边。
  • 无向图 G 中顶点数为 n,则图 G 至少有 0 条边,至多有 n(n-1)/2 条边。
  • 有向图 H 中顶点数为 n,则图 H 至少有 0 条边,至多有 n(n-1) 条边。

如图(可以自己数数呦;左边是完全无向图,右边是完全有向图):


(4)子图:从图中取出的部分集合。

如图(1):

如图(2):


(5)带权图:边上带权的图(权:具有某种特殊含义的数值,如:表示两边之间的距离)。

如图:


(6)连通图:无向图中任意两个点都存在路径可达。

如图:


(7)强连通图:有向图中,若任意两个顶点都存在路径可达。

如图:


(8)顶点的度(有向图和带权图才有度):与顶点有关的边的数目;

  • 有向图分为出度与入度;
  • 顶点V的出度=以V为起点有向的边数;
  • 顶点V的入度=以V为终点有向的边数;
  • 顶点V的度=V的出度+V的入度;
  • 图的度=图中所有顶点度的和;

问题:一个图的顶点数为 n,边数为 e,则该图的度 = 2 * e 。


(9)路径与回路

  • 路径:顶点 A 到顶点 B 的经过的所有的边;
  • 简单路径:在一条路径中,除起点与终点以外,其余定点各不相同;
  • 回路:起点和终点相同的路径;
  • 简单回路:由简单路径组成的回路称为简单回路。

例题(答案在下面呦!):在下图所示的无向图中:

(1)V0,V1,V2,V3 是不是简单路径?_______

(2)V0,V1,V2,V4,V1 是不是简单路径?_______

(3)写出无向图的一条简单回路________________

(4)写出有向图的一条简单回路________________

答案:

(1)是。

(2)不是。

(3)V0,V1,V2,V3,V0。

(4)V0,V2,V3,V0。


(10)连通分量:在无向图中,如果从顶点 vi 到顶点 vj 有路径,则称 vi 和 vj 连通。如果图中任意两个顶点之间都连通,则称该图为连通图,否则将其中的较大连通子图称为连通分量。

在有向图中,如果对于每一对顶点 vi 和 vj ,从 vi 到 vj 和从 vj 到 vi 都有路径,则该图为强连通图;否则,将其中的极大连通子图称为强连通分量。


图的存储

1、邻接矩阵(数组)表示法

邻接数组表示法是以一个 n*n 的数组来表示一个具有 n 个顶点的图形。我们以数组的索引下(下标)值来表示顶点,以数组内容来表示顶点间边是否存在(1 表示存在,0表示不存在)。

例子:无向图的邻接矩阵:

如图:

根据上述无向图得到邻接矩阵,可以得到如下结论:

结论 1 :无向图的邻接矩阵是对称的;

结论 2 :顶点 i 的度=第 i 行(列)中 1 的个数;

注意:在完全图的邻接矩阵中,对角元素为 0,其余全是 1。

例子:有向图的邻接矩阵:


根据上述有向图得到邻接矩阵,可以得出如下结论:

结论 1 :有向图的邻接矩阵可能是不对称的;

结论 2 :顶点的出度 = 第 i 行元素之和;

               顶点的入度 = 第 i 列元素之和;

               图的度 = 矩阵中 1 的个数 * 2;

结论 3 :图的存储空间占用量至于他的顶点数有关,与边数无关;适用于边比较稠密的图。

例子:带权图的邻接矩阵:

邻接矩阵的优点:容易实现图的操作,如:求某顶点的度、判断顶点之间是否有边(弧)、找顶点的邻接点等等。

邻接矩阵的缺点:n 个顶点需要 n*n 个单元存储边(弧)。对稀疏图而言,简直是在浪费空间!

2、邻接(链式)表的表示:

邻接链表法:以链表的方法来记录某个顶点的临界顶点。

例 1 :无向图的邻接链表:

例 2 :有向图的邻接链表:

例 3 :网(带权图)的邻接链表:

图的遍历

从图的某个顶点出发,访问图中的所有顶点,且使每个顶点仅被访问一次。这一过程叫做图的遍历。遍历方法:深度优先遍历和广度优先遍历。

1 . 深度优先搜索(DFS)

基本思想:——仿树的先序遍历过程。

步骤:

(1)访问起始点 v ;

(2)若 v 的第 1 个邻接点没访问过,深度遍历此邻接点;

(3)若当前邻接点已访问,再找 v 的第 2 个邻接点重新遍历;

代码如下:

#include<bits/stdc++.h>
using namespace std;
int a[20][20];
int n,e;
bool f[20];
void dfs(int x){
	f[x]=1;
	cout<<x<<' ';
	for(int i=1;i<=n;i++){
		if(a[x][i]==1&&!f[i]) dfs(i);
	}
}
int main(){
	cin>>n>>e;
	int x,y;
	for(int i=1;i<=e;i++){
		cin>>x>>y;
		a[x][y]=1;
		a[y][x]=1;
	}
	dfs(1);
	return 0;
}

2 . 广度优先搜索(BFS)

基本思想:——仿树的层次遍历过程。

步骤:

(1)在访问了起始点 v 之后,依次访问 v 的邻接点;

(2)然后再依次访问这些顶点中未被访问过的邻接点;

(3)直到所有顶点都被访问过为止;

注意:广度优先搜索是一种分层的搜索过程,每向前走一步都可能访问一批顶点,不想深度优先搜索那样有回退的情况。因此,广度优先搜索不是一个递归的过程,其算法也不是递归算法。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int a[20][20];
int q[20];
int h,t;
int n,e;
bool f[20];
int main(){
	cin>>n>>e;
	int x,y;
	for(int i=1;i<=e;i++){
		cin>>x>>y;
		a[x][y]=1;
		a[y][x]=1;
	}
	h=1;
	t=1;
	q[1]=1;
	f[1]=1;
	cout<<1<<' ';
	while(h<=t){
		for(int i=1;i<=n;i++){
			if(a[q[h]][i]==1&&!f[i]){
				cout<<i<<' ';
				t++;
				q[t]=i;
				f[i]=1;
			}
		}
		h++;
	}
	return 0;
}

欧拉路——图的一笔画问题

1 . 基本概念

欧拉路指的是——存在这样一种图,可以从其中一点出发,不重复地走完其所有的边。

如果欧拉路的起点与终点相同,则称之为欧拉回路。

其实就是一笔将从起点经过所有边到达终点(欧拉路)和一笔将从起点经过所有边回到起点的路径(欧拉回路)


2 . 如何判断是否有回路

(1)无向图

结论:度数为偶数。

证明:  为了形成回路,必定进入节点后,必须出去连接下一点(也就是说,进入节点多少次,就要出节点多少次)。

如果存在奇数条边,那么必定有一条边只可以进入节点,然而不可以出去和其它节点连接,就导致不可以构成回路。

(2)有向图

结论:出度与入度相等。

证明:同理,多少条边进入,就要多少条边出去。


3 . 判断是否有欧拉路径

欧拉路径与欧拉回路类似;

(1)在无向图中,除起点和终点是奇数条边,其余度数全都是偶数。

(2)除起点和终点以外,其余点出度与入度相等,起点出度比入度大 1 ,终点入度比出度大 1 。


总结:

(1)无向图能构成欧拉路:有 2 个或 0 个奇点;

(2)有向图能构成欧拉路:除起点和终点以外,其余点出度与入度相等,起点出度比入度大 1 ,终点入度比出度大 1 ,也可以出度=入度。

备注:当然,首要前提是——图是连通图。


欧拉路代码:

思路:

使用 DFS 寻找欧拉路的基本思想如下:

1 . DFS 寻找到第一个无边可走的结点,则这个结点必定为终点。

由于是 DFS 递归结束的时候记录的,那么该边是走完欧拉道路的最后的那条边,层层返回后最开始的也是最开始的出发地。

2 . 接下来由于 DFS 的递归回溯,会退回终点的上一个结点,继续往下搜索,直到寻找到第二个无边可走的结点,则这个接点必定是欧拉路中终点前最后访问的结点。

3 . 当通过 DFS 遍历完整张图之后,就可以倒序储存下整个欧拉路(因为是递归)。

如图:

注意:防止是循环的方法是将走过的边都拆掉

代码如下:

#include<bits/stdc++.h>
using namespace std;
int a[30][30];
int n,e;
int d[30];
int r[50];
int k;
void dfs(int x){
	for(int i=1;i<=n;i++){
		if(a[x][i]==1){
			a[x][i]=0;
			a[i][x]=0;
			dfs(i);
		}
	}
	k++;
	r[k]=x;
}
int main(){
	cin>>n>>e;
	int x,y;
	for(int i=1;i<=e;i++){
		cin>>x>>y;
		a[x][y]=1;
		a[y][x]=1;
		d[x]++;
		d[y]++;
	}
	int s=1;
	for(int i=n;i>=1;i--){
		if(d[i]%2==1){
			s=i;
			break;
		}
	}
	dfs(s);
	for(int i=k;i>=1;i--){
		cout<<r[i]<<' ';
	}
	return 0;
}

作者最后的话

现在,我们终于学习完了图论基础,由于本期的图片有点多,累死我了,我直接哭晕在厕所:(。但是大家还是要自己去思考呦!!!

最后的最后:

!!!

!!!

!!!

  • 43
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值