算法设计与分析C++求最大子段和问题

C++求最大子段和问题

在这里插入图片描述
主要用三种办法解决

  1. 暴力法O(n*n)
    遍历即可
  2. 分治法O(nlogn)
    存在重复计算
  3. 动态规划O(n)
    不存在重复计算,算法最优
#include <iostream>

using namespace std;

int maxsum1(int *A,int n)//动态规划法
{
    int sum=0;
    int b=0;
    for(int i=1;i<=n;i++)
    {
        if(b<0)b=A[i];
        else b=b+A[i];
        if(b>sum)sum=b;
    }
    return sum;
}
int maxsum2(int *a,int n)//暴力法
{
    int sum=0,bi=0,bj=0;
    for(int i=1;i<=n;i++)
    {
        int tempsum=0;
        for(int j=i;j<=n;j++)
        {
            tempsum=tempsum+a[j];
            if(tempsum>sum)
            {
                sum=tempsum;
                bi=i;
                bj=j;
            }
        }
    }
    cout<<"最大字段为:"<<endl;
    for(int i=bi;i<=bj;i++)cout<<a[i]<<" ";
    cout<<endl;
    return sum;
}

int maxsum3(int *a,int left,int right)//分治法
{
    if(left==right)return a[left]>0?a[left]:0 ;
    else
    {
        int sum=0,mid=(left+right)/2;
        int leftsum=maxsum3(a,left,mid);
        int rightsum=maxsum3(a,mid+1,right);
        int s1=0;
        int tempsum1=0;
        for(int i=mid;i>=left;i--)
        {
            tempsum1=tempsum1+a[i];
            if(tempsum1>s1)
            {
                s1=tempsum1;
            }
        }
        int s2=0;
        int tempsum2=0;
        for(int i=mid+1;i<=right;i++)
        {
            tempsum2=tempsum2+a[i];
            if(tempsum2>s2)
            {
                s2=tempsum2;
            }
        }
        sum=s1+s2;
        if(sum<leftsum) sum=leftsum;
        if(sum<rightsum) sum=rightsum;
        return sum;

    }
}
/*
6
-1 11 -4 13 -4 -5

9
1 2 5 -36 5  6 5 -2 1
*/
int main()
{
    int n;cin>>n;
    int *A=new int[n+1];
    A[0]=0;
    for(int i=1;i<=n;i++)cin>>A[i];
    cout<<"最大子段和:"<<maxsum1(A,n)<<endl;
    //cout<<"最大子段和:"<<maxsum2(A,n)<<endl;
    //cout<<"最大子段和:"<<maxsum3(A,1,n)<<endl;
    return 0;
}

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
最大子段和问题是指在一个数列中找到一个子序列,使得该子序列中所有元素的和最大。以下是三种常见的算法实现: 1. 蛮力 蛮力是最朴素的解,它的时间复杂度为 $O(n^2)$。具体实现如下: ```c++ int maxSubArray(int nums[], int n) { int ans = INT_MIN; for (int i = 0; i < n; i++) { int sum = 0; for (int j = i; j < n; j++) { sum += nums[j]; ans = max(ans, sum); } } return ans; } ``` 2. 分治 分治的时间复杂度为 $O(n\log n)$,它将问题分成三个部分:解左半部分的最大子段和解右半部分的最大子段和解跨越中点的最大子段和。具体实现如下: ```c++ int maxSubArray(int nums[], int left, int right) { if (left == right) return nums[left]; int mid = left + (right - left) / 2; int leftMax = maxSubArray(nums, left, mid); int rightMax = maxSubArray(nums, mid + 1, right); int crossMax = nums[mid]; int sum = nums[mid]; for (int i = mid - 1; i >= left; i--) { sum += nums[i]; crossMax = max(crossMax, sum); } sum = crossMax; for (int i = mid + 1; i <= right; i++) { sum += nums[i]; crossMax = max(crossMax, sum); } return max(leftMax, max(rightMax, crossMax)); } ``` 3. 动态规划 动态规划的时间复杂度为 $O(n)$,它定义了一个状态数组 $dp$,其中 $dp[i]$ 表示以 $i$ 结尾的最大子段和。具体实现如下: ```c++ int maxSubArray(int nums[], int n) { int dp[n]; dp[0] = nums[0]; int ans = nums[0]; for (int i = 1; i < n; i++) { dp[i] = max(dp[i - 1] + nums[i], nums[i]); ans = max(ans, dp[i]); } return ans; } ``` 以上是三种常见的算法实现,需要注意的是,在实际应用中,我们还可以使用其他优化,如前缀和、后缀和、单调栈等,以进一步提高算法效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值