在MATLAB中,计算回归问题的拟合优度(或判定系数)可用[B,BINT,R,RINT,STATS] = regress(Y,X)指令,其中的STATS的第一个返回值即为R2。
一般来说,R2在0到1的闭区间上取值,但在实验中,有时会遇到R2为inf(无穷大)的情况,这时我们会用到R2的计算公式:
R
2
=
S
S
R
S
S
T
=
1
−
S
S
E
S
S
T
R^2 = \frac {SSR}{SST} = 1- \frac {SSE}{SST}
R2=SSTSSR=1−SSTSSE
其中SSR为回归平方和,SSE为残差平方和,SST为总离差平方和,三者还存在下列关系:
S
S
T
=
S
S
R
+
S
S
E
SST = SSR + SSE
SST=SSR+SSE
若用
y
i
y_i
yi表示真实的观测值,用
y
ˉ
\bar{y}
yˉ表示真实观测值的平均值,用
y
i
^
\hat{y_i}
yi^表示拟合值,则SSR、SSE、SST公式可以写成下列形式:
S
S
R
=
∑
i
=
1
n
(
y
i
^
−
y
ˉ
)
2
SSR = \sum_{i=1}^{n}(\hat{y_i} - \bar{y})^2
SSR=i=1∑n(yi^−yˉ)2
S
S
E
=
∑
i
=
1
n
(
y
i
−
y
i
^
)
2
SSE = \sum_{i=1}^{n}(y_i-\hat{y_i} )^2
SSE=i=1∑n(yi−yi^)2
S
S
T
=
S
S
R
+
S
S
E
=
∑
i
=
1
n
(
y
i
−
y
ˉ
)
2
SST =SSR + SSE= \sum_{i=1}^{n}(y_i - \bar{y})^2
SST=SSR+SSE=i=1∑n(yi−yˉ)2
SSR、SSE、SST、判定系数(可决系数、拟合优度)的计算公式
最新推荐文章于 2025-03-23 23:39:29 发布