TraditionaI Comm笔记【3】:多进多出/MIMO技术
1. Overview of ‘MIMO’?
(1). The basic concept of MIMO
"Multiple in multiple out/MIMO"
指的是多进多出,是为了极大地提高信道容量,在发送端和接收端都使用多根天线,在收发之间构成多个信道的天线系统。
M
I
M
O
MIMO
MIMO系统的一个明显特点就是具有极高的频谱利用效率,在对现有频谱资源充分利用的基础上通过利用空间资源来获取可靠性与有效性两方面增益,其代价是增加了发送端与接收端的处理复杂度。大规模
M
I
M
O
MIMO
MIMO技术采用大量天线来服务数量相对较少的用户,可以有效提高频谱效率。
下图所示是一个简化的MIMO概念图。使用MIMO可以同时传输多个独立的数据流,因此与"单输入单输出(Single Input Single Output/SISO)"
情况相比,
M
I
M
O
MIMO
MIMO可以实现更高的数据吞吐量。但是,在数据传输的可靠性方面,与
S
I
S
O
SISO
SISO案例相比,几乎没有任何优势(
e
.
g
e.g
e.g., 错误)。

(2). The difference between MIMO and Diversity
“Diversity/多样性”
分为“接收多样性/Receiver Diversity”
和“发送多样性/Transmitter Diversity”
。
“接收多样性/Receiver Diversity”
:
在接收多样性中,一个比特流的多个副本通过稍微不同的路径到达多个接收器天线,这意味着接收器可以接收到相同数据的多个版本,如下图所示。 在接收到的数据的多个版本中,接收器可以选择最好的一个版本或将它们组合在一起以提高数据质量。 这样做的好处是,通信的可靠性得到了提高/更少的错误。 但在数据吞吐量方面没有优势。

“发送多样性/Transmitter Diversity”
:
在发送多样性中,一个比特流的多个副本通过多个发送天线传输,并通过稍微不同的路径到达单个接收器天线,这意味着接收器可以接收到相同数据的多个版本。在接收到的数据的多个版本中,接收器可以选择最好的一个版本或将它们组合在一起以提高数据质量。这样做的好处是,通信的可靠性得到了提高/更少的错误。 但在数据吞吐量方面没有优势。

2. Mathematical Modeling of MIMO
(1). 信道信息矩阵/Channel Information Matrix
在 2 × 2 2×2 2×2的情况下,整体的数据传输过程如下图所示。红色箭头和两个天线之间的四个框 ( h 11 , h 12 , h 21 , h 22 ) (h_{11},h_{12},h_{21},h_{22}) (h11,h12,h21,h22)表示 T x 1 , T x 2 Tx1, Tx2 Tx1,Tx2和 R x 1 , R x 2 Rx1, Rx2 Rx1,Rx2天线之间可能的数据路径。

h
11
,
h
12
,
h
21
,
h
22
h_{11},h_{12},h_{21},h_{22}
h11,h12,h21,h22是信道路径系数,用来表示有多少数据通过了每一条可能的路径。该系数越大,在该路径上传输的数据就越多。由这些信道路径系数组成的矩阵称为“信道信息矩阵/Channel Information Matrix”
。接收端和发送端之间的关系如下所示:

重要的是如何将方程
y
=
H
x
y=Hx
y=Hx解释为实际的实现过程。如下图所示,通过蓝色箭头的对应关系可以得到接收数据。但仅仅计算接收数据并不是我们的目标(不是接收机的功能),我们的目标是“提取/计算'传输数据(原始数据)'”
,这可以通过对信道信息矩阵求逆来实现,用绿色箭头表示:

但是直接对信道信息矩阵求逆的方法在实际应用中存在问题:
- 并不是所有的矩阵都是可逆的,即矩阵可逆需要满足一定的条件。
- 矩阵求逆不是一个简单的过程。因此,如果有某种预处理数据的方法,以这样的方式,接收端(本例中 U E UE UE)可以解码数据,而不需要对信道信息矩阵求逆。
为了解决这些问题,可以采用“'奇异值分解(SVD)”
方法将信道信息矩阵转换为三个矩阵,如下图所示:

通过"SVD"
可以将信道信息矩阵表示为一个简单的“对角矩阵”:

***note:更多的关于"SVD"
的介绍可以参考知乎文章:SVD.
(2). 发送端如何计算“预编码矩阵/Precoding matrix”?
上面解释了如何设计/实现“预编码器/precoder”
。简单来说,取信道信息矩阵
H
H
H,对矩阵进行"SVD"
奇异值分解,再对"SVD"
结果取酉矩阵(矩阵
U
U
U为酉矩阵,当且仅当其共轭转置为其逆矩阵)。
在实际应用中,还存在一个问题:上面提到,需要给出信道信息矩阵 H H H来求预编码矩阵,下一个问题是,谁(发送方或接收方)可以算出 H H H。答案是接收方,因为接收方(本例中 U E UE UE)可以根据发送方发送的特定参考信号(本例中 e N B eNB eNB)进行信道估计。那么,在发送端( e N B eNB eNB)需要预编码矩阵。
那么,发送端如何知道预编码矩阵呢?从概念上讲,最简单的方法是接收端( U E UE UE)将整个预编码矩阵通知给发送端。理论上简单,但实现起来并不简单,因为需要相当大的带宽来发送整个预编码矩阵,是一个巨大的开销。
为了解决这种开销问题,"3GPP/3rd Generation Partnership Project)"
提出了一个简单的方法:在该方法中,他们在标准化过程中对无线电信道的广泛研究的基础上预先定义了一组矩阵。这些预定义的矩阵对于
U
E
UE
UE和
e
N
B
eNB
eNB都是已知的。然后接收端UE根据自己的信道估计选择一个特定的预编码器(预编码矩阵),并将其选择的预编码矩阵的索引通知发送端
e
N
B
eNB
eNB。因为这只是矩阵的索引而不是矩阵本身,通过这个方法而不会造成太多的开销。
***note:关于3GPP,参考3GPP.
3. Considerations for Reality
当尝试着将数学模型应用到一个真实的系统中时,往往会碰到一些意想不到的问题。
让我们再来回顾一下数学模型:

已经知道的是:
- 由于接收端可以从接收的信号中估计出信道信息矩阵 H H H,并根据 H H H计算出这些矩阵,因此中间的三个矩阵至少对接收机来说是已知的。
- 向量 x x x对发送端来说是已知的,因为它只是传输的数据。
- 矩阵 U U U对接收端来说是已知的,因为它可以从 H H H推导出来。
现在的问题是如何求出矩阵 V V V。关于这个矩阵 V V V,主要有两个问题:
- 这是发送端应该使用的,但是发送端没有关于 H H H的任何信息,所以在发射机端不能直接计算。
- 在数据(向量 x x x)传输之前,发送端需要使用这个矩阵。那么,发送端是怎么在事情发生之前就知道的?
最常见的解决方案之一是接收端分析信道信息矩阵
H
H
H,并告知发送端最佳矩阵
V
V
V。这被称为“闭环MIMO”
。
但是,这种闭环方法不能解决上面列出的所有问题。理由如下:
虽然接收端 U E UE UE可以计算出矩阵 V V V,但这是从它刚刚接收到的数据中得到的。如果它将此信息M发送给发送端,发送端将使用该信息进行下一次传输。如果当前传输和下一次传输的信道条件没有太大的差异,那么来自接收端的信息 M M M将对下一次传输有很大的帮助。但如果信道条件变化地很快的话,这些信息可能就没有用处了。
虽然接收端
U
E
UE
UE计算出了正确的矩阵
V
V
V,但将整个矩阵本身发送到发射机端需要大量的数据和开销。在“LTE(Long Term Evolution,长期演进,LTE项目是3G的演进,是3G与4G技术之间的一个过渡,是3.9G的全球标准)”
中,只对
V
V
V使用少量预定义的矩阵,接收端对每个候选矩阵进行评估,并选择最佳的一个,并将候选矩阵的索引而不是整个矩阵的内容通知发送端。例如,在“LTE TM4”
中,他们仅为
2
×
2
2×2
2×2
M
I
M
O
MIMO
MIMO定义了4个候选
V
V
V矩阵(预编码矩阵),为
4
×
4
4×4
4×4
M
I
M
O
MIMO
MIMO定义了
16
16
16个候选
V
V
V矩阵。从数学角度来说,选中的候选可能不是最合适的,但从数学准确性和开销之间的权衡来看,它可能是最好的选择。
4. 等级指标/Rank Indicator and 条件数Condition Number
(1). Rank Indicator
等级指标是一种反映等级指数的接收端度量方法。"Rank Indicator/RI"
是一种数字指标,用于表示MIMO通信工作的好坏。
e
.
g
e.g
e.g.,假设一个
U
E
UE
UE正在与一个具有
2
×
2
2×2
2×2
M
I
M
O
MIMO
MIMO配置的eNB通信,并且
U
E
UE
UE报告RI为“2”,这意味着
2
×
2
2×2
2×2
M
I
M
O
MIMO
MIMO正在以真正的
M
I
M
O
MIMO
MIMO方式执行。然而,如果
U
E
UE
UE报告RI为“
1
1
1”,这意味着通信正在进行,但是就像用单天线一样,表明
2
×
2
2×2
2×2
M
I
M
O
MIMO
MIMO没有以最佳效率执行。
从另一个角度解释:
奇异矩阵是一个对角矩阵。一旦得到了一个信道的奇异矩阵就可以从中提取一些非常重要的信息。从奇异矩阵中得到的最重要的信息之一是"Rank Indicator"
,即:“RI”
定义为不为零的对角线元素个数。"Rank Indicator"
的物理意义是独立通信信道的数量。

以
2
×
2
2 × 2
2×2奇异矩阵(对于
2
×
2
2 × 2
2×2
M
I
M
O
MIMO
MIMO)为例。若
R
I
=
2
RI=2
RI=2,则下面所示的矩阵两个对角元素都是非零值,建立了两个独立的通信管道。若矩阵的秩为
1
1
1,则其中一个对角元素
λ
1
=
0
\lambda_1=0
λ1=0或者
λ
2
=
0
\lambda_2=0
λ2=0。这意味着即使我们安装了两个天线,实际工作的数据流只有
1
1
1个,表明来自其中一个天线的信号完全丢失或埋没在无法解码的噪声下。
∑
=
[
λ
1
0
0
λ
2
]
\sum= \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}
∑=[λ100λ2]
(2). Condition Number
上述所解释的"Rank Indicator"
只关心奇异矩阵中非零值的个数,但这并不否意味着这些数字的数量无关紧要。
e
.
g
e.g
e.g.,在
(
λ
1
=
1
,
λ
2
=
1
)
(\lambda_1 = 1, \lambda_2 = 1)
(λ1=1,λ2=1)和
(
λ
1
=
2
,
λ
2
=
0.1
)
(\lambda_1 = 2, \lambda_2 = 0.1)
(λ1=2,λ2=0.1)之间,“等级指标RI”
是相同的,但真正的性能表现是不同的。因此,为了正确估计
M
I
M
O
MIMO
MIMO信道的实际性能,还需要另一个指标—“条件数/Condition Number”
:对角线数之间的差异越小,
M
I
M
O
MIMO
MIMO信道的工作性能越优。下图显示了这个属性:

下图中,横轴表示以
d
B
dB
dB为单位的"Condition Number"
,纵轴表示以
d
B
dB
dB为单位的“信噪比SNR”
。线上的每个点都表示“要在特定的条件数下达到特定的性能(数据率),需要多少信噪比?”
或者理解为“当得到一个特定的Condition Number和一个特定的信噪比SNR时,能得到多少性能(数据率)”
。

-
e
.
g
e.g
e.g., 标记为(
B
B
B)的点表示“在这个特定的通信系统中,当
"Condition Number"
为 10 10 10 d B dB dB,信噪比为 20 20 20 d B dB dB时,可以达到最大 12 12 12 b i t / s / H z bit/s/Hz bit/s/Hz的数据速率”。换言之,“要在"Condition Number"
为 10 10 10 d B dB dB的情况下实现 12 12 12 b i t / s / H z bit/s/Hz bit/s/Hz的数据速率,需要至少 20 20 20 d d dB的信噪比”。 -
e
.
g
e.g
e.g., 标记为(
A
A
A)的点表示“在这个特定的通信系统中,当
"Condition Number"
为 0 0 0 d B dB dB,信噪比为 16 16 16 d B dB dB时,可以达到最大 12 12 12 b i t / s / H z bit/s/Hz bit/s/Hz的数据速率”。换句话说,“要在"Condition Number"
为 0 0 0 d B dB dB情况下实现 12 12 12 b i t / s / H z bit/s/Hz bit/s/Hz的数据速率,需要至少 16 16 16 d B dB dB的信噪比”。
对比点( A A A)和点( B B B),在这两个点,可以达到相同的性能(数据率);但在点( A A A),我们可以在比点( B B B)更差的信噪比下达到该性能。换句话说,当条件数接近 0 0 0 d B dB dB时,我们可以达到信噪比更差的数据率。
5. Reference
[1] sharetechnote.com.
[2] 百度百科,词条:LTE.
[2] 百度百科,词条:3GPP.