奇异值分解(SVD)详解

奇异值分解的主要思想

奇异值(singular value decomposition, SVD)是一种矩阵因子分解方法。

其主要思想是:任意一个 m × n m\times n m×n 矩阵都可以表示为三个矩阵的乘积(因子分解)形式,即:
A = U Σ V T A=U\Sigma V^\mathrm T A=UΣVT
其中 U U U m m m 阶正交矩阵, V V V n n n 阶正交矩阵, Σ \Sigma Σ 是由降序排序的非负的对角线元素组成的 m × n m\times n m×n 矩形对角矩阵。且满足:
U U T = I V V T = I Σ = d i a g ( σ 1 , σ 2 , … , σ p ) σ 1 ≥ σ 2 ≥ … ≥ σ p ≥ 0 p = min ⁡ ( m , n ) U U^{\mathrm T} = I \\ V V^{\mathrm T} = I \\ \Sigma = diag(\sigma_1,\sigma_2,\ldots,\sigma_p)\\ \sigma_1 \geq \sigma_2 \geq\ldots\geq\sigma_p \geq0 \\ p = \min(m,n) UUT=IVVT=IΣ=diag(σ1,σ2,,σp)σ1σ2σp0p=min(m,n)
σ i \sigma_i σi 称为矩阵A的奇异值,U的列向量称为左奇异向量,V的列向量称为右奇异向量。

奇异值分解形式

奇异值分解 A = U Σ V T A=U\Sigma V^\mathrm T A=UΣVT 又称矩阵的完全奇异值分解。实际常用的是奇异值分解的紧凑形式和截断形式。紧凑形式分解是与原始矩阵等秩的奇异值分解,截断奇异值分解是比原始矩阵低秩的奇异值分解。

(1)紧奇异值分解

紧奇异值分解:
A = U r Σ r V r T A=U_r\Sigma_r V_r^\mathrm T A=UrΣrVrT

其中, r = r a n k ( A ) r=rank(A ) r=rank(A)

这种分解的对角矩阵 Σ r \Sigma_r Σr 的秩和原始矩阵A的秩相等。

(2)截断奇异值分解
A ≈ U k Σ k V k T A\approx U_k\Sigma_k V_k^\mathrm T AUkΣkVkT
其中, r a n k ( A ) = r 且 0 < k < r rank(A) = r 且 0 < k < r rank(A)=r0<k<r

这种分解的对角矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值